Some rigorous results on the Pauli-Fierz model of classical electrodynamics

Dario Bambusi; Luigi Galgani

Annales de l'I.H.P. Physique théorique (1993)

  • Volume: 58, Issue: 2, page 155-171
  • ISSN: 0246-0211

How to cite

top

Bambusi, Dario, and Galgani, Luigi. "Some rigorous results on the Pauli-Fierz model of classical electrodynamics." Annales de l'I.H.P. Physique théorique 58.2 (1993): 155-171. <http://eudml.org/doc/76601>.

@article{Bambusi1993,
author = {Bambusi, Dario, Galgani, Luigi},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Coulomb gauge; global existence and uniqueness of solution of Cauchy problem; space of finite energy states; stability for family of solitary wave solutions; Fourier transform; time evolution of energy spectral distribution},
language = {eng},
number = {2},
pages = {155-171},
publisher = {Gauthier-Villars},
title = {Some rigorous results on the Pauli-Fierz model of classical electrodynamics},
url = {http://eudml.org/doc/76601},
volume = {58},
year = {1993},
}

TY - JOUR
AU - Bambusi, Dario
AU - Galgani, Luigi
TI - Some rigorous results on the Pauli-Fierz model of classical electrodynamics
JO - Annales de l'I.H.P. Physique théorique
PY - 1993
PB - Gauthier-Villars
VL - 58
IS - 2
SP - 155
EP - 171
LA - eng
KW - Coulomb gauge; global existence and uniqueness of solution of Cauchy problem; space of finite energy states; stability for family of solitary wave solutions; Fourier transform; time evolution of energy spectral distribution
UR - http://eudml.org/doc/76601
ER -

References

top
  1. [1] E. Fermi, Quantum Theory of Radiation, Rev. Mod. Phys., Vol. 4, 1932, pp. 87-132. Zbl0003.41503
  2. [2] W. Heitler, The Quantum Theory of Radiation, Oxford, Clarendon, 1950. Zbl0040.42303
  3. [3] P.A.M. Dirac, The Principles of Quantum Mechanics, Oxford, Clarendon, 1967. Zbl0012.18104
  4. [4] A. Kramers, Die Wechselwirkung zwischen geladenen Teilchen und Strahlungsfeld, Nuovo Cimento, Vol. 15, 1938, pp. 108-114. Zbl64.1485.02JFM64.1485.02
  5. [5] A. Kramers, Quantum Mechanics, North Holland, P. C., 1958. Zbl0077.20802
  6. [6] W. Pauli and M. Fierz, Zur Theorie der Emission langwelliger Lichtquanten, Nuovo Cimento, Vol. 15, 1938, pp. 167-188. JFM64.1487.01
  7. [7] P. Blanchard, Discussion mathématique du modèle de Pauli et Fierz relatif à la catastrophe infrarouge, Commun. Math. Phys., Vol. 15, 1969, pp. 156-172. MR256676
  8. [8] A. Arai, An Asymptotic Analysis and its Application to the nonrelativistic Limit of the Pauli-Fierz and Spin-boson Model, J. Math. Phys., Vol. 31, 1990, pp. 2653-2663. Zbl0734.47046MR1075749
  9. [9] T. Okamoto and K. Yajima, Complex Scaling Technique in non-Relativistic QED, Ann. Inst. H. Poincaré A, Vol. 42, 1985, pp. 311-327. Zbl0594.58057MR797278
  10. [10] L. Galgani, C. Angaroni, L. Forti, A. Giorgilli and F. Guerra, Classical Electrodynamics as a Nonlinear Dynamical System, Phys. Lett. A, Vol. 139, 1989, pp. 221- 230. 
  11. [11] P. Bocchieri, A. Crotti and A. Loinger, A Classical Solvable Model of a Radiant Cavity, Lett. Nuovo Cimento, Vol. 4, 1972, pp.741-744. 
  12. [12] G. Benettin, L. Galgani and A. Giorgilli, Boltzmann's Ultraviolet Cutoff and Nekhoroshev's Theorem on Arnold Diffusion, Nature, Vol. 311, 1984, pp. 444-445. 
  13. [13] G. Casati, I. Guarneri and F. Valz-Gris, Preliminaries to the Ergodic Theory of Infinite-Dimensional Systems: A Model of Radiant Cavity, J. Stat. Phys., Vol. 30, 1983, pp. 195-217. MR710740
  14. [14] L. Gross, The Cauchy Problem for the Coupled Maxwell and Dirac Equations, Comm. Pure Appl. Math., Vol. 19, 1966, pp. 1-15. Zbl0137.32401MR190520
  15. [15] T. Kato, Quasi-linear Equations of Evolution, with Applications to Partial Differential Equations, in Lect. Notes Math., No. 448, Springer, New York, 1975. Zbl0315.35077MR407477
  16. [16] J.M. Chadam, Global Solutions of the Cauchy Problem for the (Classical) Coupled Maxwell-Dirac Equations in One Space Dimension, J. Funct. Anal., Vol. 13, 1973, pp. 173-184. Zbl0264.35058MR368640
  17. [17] M. Abraham, Prinzipien der Dynamik des Elektrons, Ann. der Phys., Vol. 10, 1903, pp. 105-179. Zbl34.0915.02JFM34.0915.02
  18. [18] I. Segal, Nonlinear Semigroups, Ann. of Math., Vol. 78, 1963, pp. 339-364. Zbl0204.16004
  19. [19] S.B. Kuksin, Perturbation Theory for Quasiperiodic Solutions of Infinite Dimensional Hamiltonian Systems. 1. Symplectic structures and Hamiltonian Scales of Hilbert Spaces. Preprint of Max Planck Institut für Mathematik MPI/90-99. S.B. Kuksin, Perturbation Theory for Quasiperiodic Solutions of Infinite Dimensional Hamiltonian Systems. 2. Statement of the main theorem and its consequences, Preprint of Max Planck Institut für Mathematik MPI/90-100. Zbl0678.58037
  20. [20] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, New York, 1993. MR710486
  21. [21] J.E. Marsden and J.R. Hughes, Mathematical Foundations of Elasticity, Prentice Hall, Englewood Cliff, 1983. Zbl0545.73031
  22. [22] M. Phillips, Classical Electrodynamics, in Handbuch der Physik, Springer Verlag, Berlin, 1962. MR148344
  23. [23] P.A.M. Dirac, Classical Theory of Radiating Electrons, Proc. Roy. Soc., Vol. A167, 1938, pp. 148-168. Zbl0023.42702JFM64.1481.03
  24. [24] F. Rohrlich, Classical Charged particles, Addison-Wesley, Redwood City, 1965. Zbl0131.43602MR1200457
  25. [25] J. Jeans, On the Vibrations set up in Molecules by Collisions, Phil. Mag., Vol. 6, 1903, p. 279; J. Jeans, On the Partition of Energy between Matter and Aether, Phil. Mag., Vol. 10, 1905, p. 91. See also L. Galgani, Relaxation times and the Foundations of Classical Statistical Mechanics, in Nonlinear Evolution and Cahotic Phenomena, G. GALLAVOTTI and P. ZWEIFEL Eds., Nato ASI series B176, pp. 147-160, Plenum Press, New York, 1988. JFM34.0833.02
  26. [26] M. Grillakis, J. Shatah and W. Strauss, Stability of Solitary Waves in the Presence of Symmetry, I, J. Funct. Anal., Vol. 74, 1987, pp. 160-197. Zbl0656.35122MR901236
  27. [26] M. Grillakis, J. Shatah and W. Strauss, Stability of Solitary Waves in the Presence of Symmetry, II, J. Funct. Anal., Vol. 94, 1990, pp. 308-348. Zbl0711.58013MR1081647
  28. [28] P. Blanchard, J. Stubbe and L. Vazquez, On the Stability of Solitary Waves for Classical Scalar Fields, Ann. Inst. Henri Poincaré, Vol. 47, 1987, pp. 309-336. Zbl0649.35076MR921309

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.