Variétés bi-structurées et opérateurs de récursion
Annales de l'I.H.P. Physique théorique (1985)
- Volume: 43, Issue: 3, page 349-357
- ISSN: 0246-0211
Access Full Article
topHow to cite
topGutkin, D.. "Variétés bi-structurées et opérateurs de récursion." Annales de l'I.H.P. Physique théorique 43.3 (1985): 349-357. <http://eudml.org/doc/76304>.
@article{Gutkin1985,
author = {Gutkin, D.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Poisson structure and a presymplectic structure on a manifold; complete integrability; first integrals},
language = {fre},
number = {3},
pages = {349-357},
publisher = {Gauthier-Villars},
title = {Variétés bi-structurées et opérateurs de récursion},
url = {http://eudml.org/doc/76304},
volume = {43},
year = {1985},
}
TY - JOUR
AU - Gutkin, D.
TI - Variétés bi-structurées et opérateurs de récursion
JO - Annales de l'I.H.P. Physique théorique
PY - 1985
PB - Gauthier-Villars
VL - 43
IS - 3
SP - 349
EP - 357
LA - fre
KW - Poisson structure and a presymplectic structure on a manifold; complete integrability; first integrals
UR - http://eudml.org/doc/76304
ER -
References
top- [1] F. Magri, A geometrical approach to the nonlinear solvable equations, Lecture Notes in Physics, t. 120, Springer-Verlag, 1980, p. 233-263. MR581899
- [2] F. Magri, C. Morosi, A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, preprint Milano Univ., 1984.
- [3] F. Magri, C. Morosi, O. Ragnisco, Reduction techniques for infinite-dimensional Hamiltonian systems: some ideas and applications. Communications in Mathematical Physics, t. 99, 1985, p. 115-140. Zbl0602.58017MR791643
- [4] G. Marmo, A geometrical characterization of completely integrable systems, in Proceedings of the meeting « Geometry and Physics », Florence, 1982, p. 257- 262. Zbl0548.58018MR760848
- [5] S. De Filippo, G. Marmo, M. Salerno, G. Vilasi, A new characterization of completely integrable systems, preprint Salerno Univ., 1983.
- [6] De Filippo, M. Salerno, G. Vilasi. A geometrical approach to the integrability of soliton equations. Letters in Mathematical Physics, t. 9, n° 2, 1985, p. 85-91. Zbl0586.35087MR785860
- [7] B. Fuchssteiner, The Lie algebra structure of degenerate Hamiltonian and bihamiltonian systems, Progress of Theoretical Physics, t. 68, n° 4, 1982, p. 1082- 1104. Zbl1098.37540MR688120
- [8] A. Lichnerowicz. Les variétés de Poisson et leurs algèbres de Lie associées, Journal of Differential Geometry, t. 12, 1977, p. 253-300. Zbl0405.53024MR501133
- [9] C.M. Marle, Poisson manifolds in mechanics, in Bifurcation Theory, Mechanics and Physics, Reidel Publishing Company, 1983, p. 47-76. Zbl0525.58019MR726243
- [10] Y. Kosmann-Schwarzbach, Cours de 3e cycle, Université de Lille, 1984.
- [11] A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Mathematics, t. 6, 1971, p. 329-346. Zbl0213.48203MR286137
- [12] V.I. Arnold, Mathematical methods of classical mechanics, Springer-Verlag, New York, 1978. Zbl0386.70001MR690288
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.