Variétés bi-structurées et opérateurs de récursion

D. Gutkin

Annales de l'I.H.P. Physique théorique (1985)

  • Volume: 43, Issue: 3, page 349-357
  • ISSN: 0246-0211

How to cite

top

Gutkin, D.. "Variétés bi-structurées et opérateurs de récursion." Annales de l'I.H.P. Physique théorique 43.3 (1985): 349-357. <http://eudml.org/doc/76304>.

@article{Gutkin1985,
author = {Gutkin, D.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Poisson structure and a presymplectic structure on a manifold; complete integrability; first integrals},
language = {fre},
number = {3},
pages = {349-357},
publisher = {Gauthier-Villars},
title = {Variétés bi-structurées et opérateurs de récursion},
url = {http://eudml.org/doc/76304},
volume = {43},
year = {1985},
}

TY - JOUR
AU - Gutkin, D.
TI - Variétés bi-structurées et opérateurs de récursion
JO - Annales de l'I.H.P. Physique théorique
PY - 1985
PB - Gauthier-Villars
VL - 43
IS - 3
SP - 349
EP - 357
LA - fre
KW - Poisson structure and a presymplectic structure on a manifold; complete integrability; first integrals
UR - http://eudml.org/doc/76304
ER -

References

top
  1. [1] F. Magri, A geometrical approach to the nonlinear solvable equations, Lecture Notes in Physics, t. 120, Springer-Verlag, 1980, p. 233-263. MR581899
  2. [2] F. Magri, C. Morosi, A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, preprint Milano Univ., 1984. 
  3. [3] F. Magri, C. Morosi, O. Ragnisco, Reduction techniques for infinite-dimensional Hamiltonian systems: some ideas and applications. Communications in Mathematical Physics, t. 99, 1985, p. 115-140. Zbl0602.58017MR791643
  4. [4] G. Marmo, A geometrical characterization of completely integrable systems, in Proceedings of the meeting « Geometry and Physics », Florence, 1982, p. 257- 262. Zbl0548.58018MR760848
  5. [5] S. De Filippo, G. Marmo, M. Salerno, G. Vilasi, A new characterization of completely integrable systems, preprint Salerno Univ., 1983. 
  6. [6] De Filippo, M. Salerno, G. Vilasi. A geometrical approach to the integrability of soliton equations. Letters in Mathematical Physics, t. 9, n° 2, 1985, p. 85-91. Zbl0586.35087MR785860
  7. [7] B. Fuchssteiner, The Lie algebra structure of degenerate Hamiltonian and bihamiltonian systems, Progress of Theoretical Physics, t. 68, n° 4, 1982, p. 1082- 1104. Zbl1098.37540MR688120
  8. [8] A. Lichnerowicz. Les variétés de Poisson et leurs algèbres de Lie associées, Journal of Differential Geometry, t. 12, 1977, p. 253-300. Zbl0405.53024MR501133
  9. [9] C.M. Marle, Poisson manifolds in mechanics, in Bifurcation Theory, Mechanics and Physics, Reidel Publishing Company, 1983, p. 47-76. Zbl0525.58019MR726243
  10. [10] Y. Kosmann-Schwarzbach, Cours de 3e cycle, Université de Lille, 1984. 
  11. [11] A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Mathematics, t. 6, 1971, p. 329-346. Zbl0213.48203MR286137
  12. [12] V.I. Arnold, Mathematical methods of classical mechanics, Springer-Verlag, New York, 1978. Zbl0386.70001MR690288

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.