A-cohomologie et opérateurs de récursion

D. Gutkin

Annales de l'I.H.P. Physique théorique (1987)

  • Volume: 47, Issue: 4, page 355-366
  • ISSN: 0246-0211

How to cite

top

Gutkin, D.. "A-cohomologie et opérateurs de récursion." Annales de l'I.H.P. Physique théorique 47.4 (1987): 355-366. <http://eudml.org/doc/76383>.

@article{Gutkin1987,
author = {Gutkin, D.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {compatible Poisson structures; -cohomology; recursion operator; Nijenhuis torsion},
language = {fre},
number = {4},
pages = {355-366},
publisher = {Gauthier-Villars},
title = {A-cohomologie et opérateurs de récursion},
url = {http://eudml.org/doc/76383},
volume = {47},
year = {1987},
}

TY - JOUR
AU - Gutkin, D.
TI - A-cohomologie et opérateurs de récursion
JO - Annales de l'I.H.P. Physique théorique
PY - 1987
PB - Gauthier-Villars
VL - 47
IS - 4
SP - 355
EP - 366
LA - fre
KW - compatible Poisson structures; -cohomology; recursion operator; Nijenhuis torsion
UR - http://eudml.org/doc/76383
ER -

References

top
  1. [1] S. De Filippo, M. Salerno, G. Vilasi, A geometrical approach to the integrability of soliton equations. Lett. in Math. Phys., t. 9, 1985, p. 85-91. Zbl0586.35087MR785860
  2. [2] A. Frolicher, A. Nijenhuis, Theory of vector-valued differential forms. Indag. Math., t. 23, 1956, p. 338-359. Zbl0079.37502MR82554
  3. [3] B. Fuchssteiner, A.S. Fokas, Symplectic structures, their Backlund transformations and hereditary symmetries, Physica, t. 4 D, 1981, p. 47-66. Zbl1194.37114MR636470
  4. [4] D. Gutkin, a) Variétés bi-structurées et opérateurs de récursion. Ann. Inst. Henri Poincaré, t. 43, 1985, p. 349-357. b) Spectres des opérateurs de récursion et séparabilité des systèmes dynamiques, Publ. IRMA, Univ. de Lille 1, t. 1, 1986. Zbl0587.58015MR824844
  5. [5] A. Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées. J. Diff. Geom., t. 12, 1977, p. 253-300. Zbl0405.53024MR501133
  6. [6] F. Magri, C. Morosi, A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, Quaderno S 19/1984, Univ. di Milano. 
  7. [7] A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields. Proc. Kon. Ned. Ak. Wet., t. A 58, 1955, p. 390-403. Zbl0068.15001MR74879
  8. [8] R. Ouzilou, Hamiltonian actions on Poisson manifolds, in « Symplectic geometry », Crumeyrolle and Grifone Ed., Pitman. Research Notes in Mathematics, t. 80, 1983, p. 172-183. Zbl0514.58010MR712169

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.