Remarks on the Lichnerowicz-Poisson cohomology

Izu Vaisman

Annales de l'institut Fourier (1990)

  • Volume: 40, Issue: 4, page 951-963
  • ISSN: 0373-0956

Abstract

top
The paper begins with some general remarks which include the Mayer-Vietoris exact sequence, a covariant version of the Lichnerowicz-Poisson cohomology, and the definition of an associated Serre-Hochshild spectral sequence. Then we consider the regular case, and we discuss the Poisson cohomology by using a natural bigrading of the Lichnerowicz cochain complex. Furthermore, if the symplectic foliation of the Poisson manifold is either transversally Riemannian or transversally symplectic, the spectral sequence mentioned above is determined by the leafwise cohomologies of the foliation, and if, moreover, the Poisson structure is transversally constant, the spectral sequence defines the Lichnerowicz-Poisson cohomology in a straightforward manner.

How to cite

top

Vaisman, Izu. "Remarks on the Lichnerowicz-Poisson cohomology." Annales de l'institut Fourier 40.4 (1990): 951-963. <http://eudml.org/doc/74907>.

@article{Vaisman1990,
abstract = {The paper begins with some general remarks which include the Mayer-Vietoris exact sequence, a covariant version of the Lichnerowicz-Poisson cohomology, and the definition of an associated Serre-Hochshild spectral sequence. Then we consider the regular case, and we discuss the Poisson cohomology by using a natural bigrading of the Lichnerowicz cochain complex. Furthermore, if the symplectic foliation of the Poisson manifold is either transversally Riemannian or transversally symplectic, the spectral sequence mentioned above is determined by the leafwise cohomologies of the foliation, and if, moreover, the Poisson structure is transversally constant, the spectral sequence defines the Lichnerowicz-Poisson cohomology in a straightforward manner.},
author = {Vaisman, Izu},
journal = {Annales de l'institut Fourier},
keywords = {Lichnerowicz-Poisson cohomology; Serre-Hochschild spectral sequence; Poisson manifold},
language = {eng},
number = {4},
pages = {951-963},
publisher = {Association des Annales de l'Institut Fourier},
title = {Remarks on the Lichnerowicz-Poisson cohomology},
url = {http://eudml.org/doc/74907},
volume = {40},
year = {1990},
}

TY - JOUR
AU - Vaisman, Izu
TI - Remarks on the Lichnerowicz-Poisson cohomology
JO - Annales de l'institut Fourier
PY - 1990
PB - Association des Annales de l'Institut Fourier
VL - 40
IS - 4
SP - 951
EP - 963
AB - The paper begins with some general remarks which include the Mayer-Vietoris exact sequence, a covariant version of the Lichnerowicz-Poisson cohomology, and the definition of an associated Serre-Hochshild spectral sequence. Then we consider the regular case, and we discuss the Poisson cohomology by using a natural bigrading of the Lichnerowicz cochain complex. Furthermore, if the symplectic foliation of the Poisson manifold is either transversally Riemannian or transversally symplectic, the spectral sequence mentioned above is determined by the leafwise cohomologies of the foliation, and if, moreover, the Poisson structure is transversally constant, the spectral sequence defines the Lichnerowicz-Poisson cohomology in a straightforward manner.
LA - eng
KW - Lichnerowicz-Poisson cohomology; Serre-Hochschild spectral sequence; Poisson manifold
UR - http://eudml.org/doc/74907
ER -

References

top
  1. [BV] K. H. BHASKARA and K. VISWANATH, Poisson algebras and Poisson manifolds, Pitman Research Notes in Math., 174, Longman Sci., Harlow and New York, 1988. Zbl0671.58001MR89j:58026
  2. [BT] R. BOTT and L. W. TU, Differential forms in algebraic topology, Graduate Texts in Math., 82, Springer-Verlag, New York, Heidelberg, Berlin, 1982. Zbl0496.55001MR83i:57016
  3. [E] A. El KACIMI ALAOUI, Sur la cohomologie feuilletée, Composition Math., 49 (1983), 195-215. Zbl0516.57017MR85a:57016
  4. [F] D. B. FUKS, Cohomology of infinite dimensional Lie algebras, Consultants Bureau, New York and London, 1986. Zbl0667.17005MR88b:17001
  5. [G] D. GUTKIN, Variétés bistructurées et opérateurs de récursion, Ann. Inst. H. Poincaré, 43 (1985), 349-357. Zbl0587.58015MR87f:58049
  6. [H] J. HUEBSCHMANN, Poisson cohomology and quantization, J. für Reine und Angew. Math., 408 (1990), 57-113. Zbl0699.53037MR92e:17027
  7. [K] J. L. KOSZUL, Crochet de Schouten — Nijenhuis et cohomologie, In : E. Cartan et les mathématiques d'aujourd'hui, Soc. Math. de France, Astérisque, hors série, (1985), 257-271. Zbl0615.58029MR88m:17013
  8. [KT] F. KAMBER and Ph. TONDEUR, Foliations and metrics, Progress in Math., 32, Birkhäuser, Boston, 1983, 103-152. Zbl0542.53022MR85a:57017
  9. [L] A. LICHNEROWICZ, Les variétés de Poisson et leurs algèbres de Lie associées, J. Diff. Geometry, 12 (1977), 253-300. Zbl0405.53024MR58 #18565
  10. [LT] J. A. A. LÓPEZ and Ph. TONDEUR, Hodge decomposition along the leaves of a Riemannian foliation, Preprint, Urbana-Illinois, 1989. 
  11. [V1] I. VAISMAN, Cohomology and differential forms, M. Dekker Inc., New York, 1973. Zbl0267.58001MR49 #6095
  12. [V2] I. VAISMAN, On the geometric quantization of Poisson manifolds, Preprint, Haifa, 1990. 
  13. [VK] Yu. M. VOROB'EV and M. V. KARASEV, Poisson manifolds and their Schouten bracket, Funct. Analysis and its Applications, 22(1) (1988), 1-9. Zbl0667.58018
  14. [X] P. XU, Poisson cohomology of regular Poisson manifolds, Preprint, Berkeley, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.