Truncated Gamow functions and the exponential decay law

Erik Skibsted

Annales de l'I.H.P. Physique théorique (1987)

  • Volume: 46, Issue: 2, page 131-153
  • ISSN: 0246-0211

How to cite

top

Skibsted, Erik. "Truncated Gamow functions and the exponential decay law." Annales de l'I.H.P. Physique théorique 46.2 (1987): 131-153. <http://eudml.org/doc/76354>.

@article{Skibsted1987,
author = {Skibsted, Erik},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Gamow functions; -wave Hamiltonian; resonance; sharp cut-off approximations; exponentially damped; eigenfunction representation; Breit-Wigner form},
language = {eng},
number = {2},
pages = {131-153},
publisher = {Gauthier-Villars},
title = {Truncated Gamow functions and the exponential decay law},
url = {http://eudml.org/doc/76354},
volume = {46},
year = {1987},
}

TY - JOUR
AU - Skibsted, Erik
TI - Truncated Gamow functions and the exponential decay law
JO - Annales de l'I.H.P. Physique théorique
PY - 1987
PB - Gauthier-Villars
VL - 46
IS - 2
SP - 131
EP - 153
LA - eng
KW - Gamow functions; -wave Hamiltonian; resonance; sharp cut-off approximations; exponentially damped; eigenfunction representation; Breit-Wigner form
UR - http://eudml.org/doc/76354
ER -

References

top
  1. [1] S. Agmon, Annali della Scuola Norm. Sup. di Pisa, t. 2 (4), 1975, p. 151-218. Zbl0315.47007
  2. [2] Albeverio, Ferreira and Streit(eds.), Resonances. Models and Phenomena, Lecture notes in Physics, Springer-Verlag, Berlin, 1984. MR777330
  3. [3] M.S. Ashbaugh, E.M. Harrell, Commun. Math. Phys., t. 83, 1982, p. 151-170. Zbl0494.34044MR649157
  4. [4] A. Bottino, A.M. Longoni, T. Regge, Il Nuovo Cimento, Vol. XXIII, n° 6, 1962, p. 955-1004. 
  5. [5] G. Breit, Physical Review, t. 58, 1940, p. 506-537. 
  6. [6] G. Breit, F.L. Yost, Physical Review, t. 48, 1935, p. 203-210. 
  7. [7] H. Casimir, Physica, t. 1, 1934, p. 193-198. Zbl0008.28301JFM60.1457.04
  8. [8] F. Coester, L. Schlessinger, Annals of Physics, t. 78, 1973, p. 90-131. 
  9. [9] L. Fonda, G.C. Ghirardi, A. Rimini, Rep. Prog. Phys., t. 41, 1978, p. 587. 
  10. [10] G. Gamow, Zeitschrift für Physik, t. 51, 1928, p. 204-212. JFM54.0969.04
  11. [11] R.W. Gurney, E.U. Condon, Phys. Rev., t. 33, 1929, p. 127-132. JFM55.0550.05
  12. [12] E.M. Harrell, Commun. Math. Phys., t. 86, 1982, p. 221-225. Zbl0507.34024MR676185
  13. [13] V.J. Menon, A.V. Lagu, Physical Review Letters, t. 51, n° 16, 1983, p. 1407-1410. 
  14. [14] R.G. Newton, Scattering Theory of Waves and Particles, Springer-Verlag, Berlin, 1982. Zbl0496.47011MR666397
  15. [15] M. Reed, B. Simon, Methods of modern mathematical physics, III, Scattering theory, Academic Press, New York, 1979. Zbl0405.47007MR529429
  16. [16] L. Schlessinger, G.L. Payne, Phys. Rev., t. C 6, 1972, p. 2047. 
  17. [17] B. Simon, Quantum Mechanicsfor Hamiltonians Defined as Quadratic Forms, Princeton University Press, Princeton, New Jersey, 1971. Zbl0232.47053MR455975
  18. [18] E. Skibsted, Resonances of Schrödinger Operators with Potentials γrβ exp (- ζrα), ζ &gt; 0, β &gt; - 2 and α &gt; 1, J. Math. Anal. Appl., t. 117, n° 1, 1986, p. 153-186. Zbl0611.35014MR843011
  19. [19] E. Skibsted, Truncated Gamow Functions, α-decay and the Exponential Law, Commun. Math. Phys., t. 104, 1986, p. 591-604. Zbl0594.58062MR841672
  20. [20] E. Skibsted, On the evolution of two and three-body resonance states, submitted to J. Math. Anal. Appl. Zbl0688.47006

NotesEmbed ?

top

You must be logged in to post comments.