Une approche alternative de l’évolution adiabatique des résonances de forme 1D .
Francis Nier[1]
- [1] IRMAR, UMR - CNRS 6625 Université Rennes 1 Campus de Beaulieu 35042 Rennes Cedex, France & CMAP, UMR - CNRS 7641 École Polytechnique 91128 Palaiseau Cedex
Séminaire Équations aux dérivées partielles (2009-2010)
- page 1-9
Access Full Article
topHow to cite
topNier, Francis. "Une approche alternative de l’évolution adiabatique des résonances de forme 1D .." Séminaire Équations aux dérivées partielles (2009-2010): 1-9. <http://eudml.org/doc/251181>.
@article{Nier2009-2010,
affiliation = {IRMAR, UMR - CNRS 6625 Université Rennes 1 Campus de Beaulieu 35042 Rennes Cedex, France & CMAP, UMR - CNRS 7641 École Polytechnique 91128 Palaiseau Cedex},
author = {Nier, Francis},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-9},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Une approche alternative de l’évolution adiabatique des résonances de forme 1D .},
url = {http://eudml.org/doc/251181},
year = {2009-2010},
}
TY - JOUR
AU - Nier, Francis
TI - Une approche alternative de l’évolution adiabatique des résonances de forme 1D .
JO - Séminaire Équations aux dérivées partielles
PY - 2009-2010
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 9
LA - fre
UR - http://eudml.org/doc/251181
ER -
References
top- S. Albeverio et K. Pankrashkin. A remark on Krein’s resolvent formula and boundary conditions. J. Phys. A, 38(22) :4859–4864, 2005. Zbl1071.47003MR2148628
- W.K. Abou Salem et J. Fröhlich. Adiabatic theorems for quantum resonances. Comm. Math. Phys., 273(3) :651–675, 2007. Zbl1153.81010MR2318861
- J. Aguilar et J. M. Combes. A class of analytic perturbations for one-body Schrödinger Hamiltonians. Comm. Math. Phys., 22 :269–279, 1971. Zbl0219.47011MR345551
- J. E. Avron, R. Seiler et L. G. Yaffe. Adiabatic theorems and applications to the quantum Hall effect. Comm. Math. Phys., 110(1) :33–49, 1987. Zbl0626.58033MR885569
- E. Balslev et J. M. Combes. Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions. Comm. Math. Phys., 22 :280–294, 1971. Zbl0219.47005MR345552
- N. Ben Abdallah, P. Degond, and P.A. Markowich. On a one-dimensional Schrödinger-Poisson scattering model. Z. Angew. Math. Phys. Zbl0885.34067
- N. Ben Abdallah. On a multidimensional Schrödinger-Poisson scattering model for semiconductors. J. Math. Phys., 41(7) :4241–4261, 2000. Zbl0977.82052MR1765586
- V. Bonnaillie-Noël, A. Faraj et F. Nier. Simulation of resonant tunneling heterostructures : numerical comparison of a complete Schrödinger-Poisson system and a reduced nonlinear model. J. Comput. Elec., 8(1) :11–18, 2009.
- V. Bonnaillie-Noël, F. Nier et Y. Patel. Computing the steady states for an asymptotic model of quantum transport in resonant heterostructures. J. Comput. Phys., 219(2) :644–670, 2006. Zbl1189.82129MR2274952
- V. Bonnaillie-Noël, F. Nier et Y. Patel. Far from equilibrium steady states of 1D-Schrödinger-Poisson systems with quantum wells. I. Ann. Inst. H. Poincaré Anal. Non Linéaire, 25(5) :937–968, 2008. Zbl1149.82349MR2457818
- V. Bonnaillie-Noël, F. Nier et Y. Patel. Far from equilibrium steady states of 1D-Schrödinger-Poisson systems with quantum wells. II. J. Math. Soc. Japan, 61(1) :65–106, 2009. Zbl1157.82046MR2272872
- M. Büttiker, Y. Imry, R. Landauer et S. Pinhas. Generalized manychannel conductance formula with application to small rings. Phys. Rev. B31 (1985) pp. 6207–6215.
- H. L. Cycon, R. G. Froese, W. Kirsch et B. Simon. Schrödinger operators with application to quantum mechanics and global geometry. Texts and Monographs in Physics. Springer-Verlag, Berlin, study edition, 1987. Zbl0619.47005MR883643
- A. Faraj, A. Mantile et F. Nier. Adiabatic evolution of 1D shape resonances : an artificial interface conditions approach. Prépublication de l’IRMAR janvier 2010, hal-00448868. Zbl1223.35125MR2782724
- B. Helffer et J. Sjöstrand. Résonances en limite semi-classique. Number 24-25 in Mém. Soc. Math. France (N.S.). 1986. Zbl0631.35075MR871788
- P. D. Hislop et I. M. Sigal. Semiclassical theory of shape resonances in quantum mechanics, volume 78(399) of Mem. Amer. Math. Soc. 1989. Zbl0704.35115MR989524
- G. Jona-Lasinio, C. Presilla et J. Sjöstrand. On Schrödinger equations with concentrated nonlinearities. Ann. Physics, 240(1) :1–21, 1995. Zbl0820.34050MR1329589
- A. Joye et C.E. Pfister. Exponential estimates in adiabatic quantum evolution. In XIIth International Congress of Mathematical Physics (ICMP ’97) (Brisbane), pages 309–315. Int. Press, Cambridge, MA, 1999. Zbl1253.81060MR1697294
- A. Joye. General adiabatic evolution with a gap condition. Comm. Math. Phys., 275(1) :139–162, 2007. Zbl1176.47032MR2335771
- T. Kato. Perturbation theory for linear operators. Second edition. Grundlehren der Mathematischen Wissenschaften, Band 132. Springer-Verlag (1976). Zbl0342.47009MR407617
- M. Klein et J. Rama. Almost exponential decay of quantum resonance states and Paley-Wiener type estimates in Gevrey spaces. preprint, mp-arc 09-64, 2009. Zbl1208.81092MR2671569
- M. Klein, J. Rama et R. Wüst. Time evolution of quantum resonance states. Asymptot. Anal., 51(1) :1–16, 2007. Zbl1216.81065MR2294102
- R. Landauer. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Develop.1 (1957) pp. 223–231. MR90369
- G. Nenciu. Linear adiabatic theory. Exponential estimates. Comm. Math. Phys., 152(3) :479–496, 1993. Zbl0768.34038MR1213299
- G. Nenciu et G. Rasche. On the adiabatic theorem for nonselfadjoint Hamiltonians. J. Phys. A, 25(21) :5741–5751, 1992. MR1192026
- F. Nier. The dynamics of some quantum open systems with short-range nonlinearities. Nonlinearity, 11(4) :1127–1172, 1998. Zbl0909.34052MR1632618
- F. Nier. Accurate WKB approximation for a 1D problem with low regularity. Serdica Math. J., 34(1) :113–126, 2008. Zbl1199.81023MR2414416
- K. Pankrashkin. Resolvents of self-adjoint extensions with mixed boundary conditions. Rep. Math. Phys., 58(2) :207–221, 2006. Zbl1143.47017MR2281536
- G. Perelman. Evolution of adiabatically perturbed resonant states. Asymptot. Anal., 22(3-4) :177–203, 2000. Zbl1075.81521MR1753764
- C. Presilla et J. Sjöstrand. Transport properties in resonant tunneling heterostructures. J. Math. Phys., 37(10) :4816–4844, 1996. Zbl0868.35112MR1411610
- B. Simon. Resonances and complex scaling : a rigorous overview. Int.J. Quantum Chem., 14(4) :529–542, 1978.
- B. Simon. The definition of molecular resonance curves by the method of exterior complex scaling. Phys. Lett., 71A(2,3) :211–214, 1979.
- J. Sjöstrand. Projecteurs adiabatiques du point de vue pseudodifférentiel. C. R. Acad. Sci. Paris Sér. I Math., 317(2) :217–220, 1993. Zbl0783.35087MR1231425
- J. Sjöstrand et M. Zworski. Complex scaling and the distribution of scattering poles. J. Amer. Math. Soc., 4(4) :729–769, 1991. Zbl0752.35046MR1115789
- E. Skibsted. Truncated Gamow functions, -decay and the exponential law. Comm. Math. Phys., 104(4) :591–604, 1986. Zbl0594.58062MR841672
- E. Skibsted. Truncated Gamow functions and the exponential decay law. Ann. Inst. H. Poincaré Phys. Théor., 46(2) :131–153, 1987. Zbl0618.58029MR887144
- E. Skibsted. On the evolution of resonance states. J. Math. Anal. Appl., 141(1) :27–48, 1989. Zbl0688.47006MR1004582
- A. Soffer et M. I. Weinstein. Time dependent resonance theory. Geom. Funct. Anal., 8(6) :1086–1128, 1998. Zbl0917.35023MR1664792
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.