On the stability of solitary waves for classical scalar fields
Ph. Blanchard; J. Stubbe; L. Vázquez
Annales de l'I.H.P. Physique théorique (1987)
- Volume: 47, Issue: 3, page 309-336
- ISSN: 0246-0211
Access Full Article
topHow to cite
topBlanchard, Ph., Stubbe, J., and Vázquez, L.. "On the stability of solitary waves for classical scalar fields." Annales de l'I.H.P. Physique théorique 47.3 (1987): 309-336. <http://eudml.org/doc/76381>.
@article{Blanchard1987,
author = {Blanchard, Ph., Stubbe, J., Vázquez, L.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {stability; bound states of lowest action; nonlinear Klein-Gordon and Schrödinger equations; Shatah-Strauss formalism; existence; minimum action solutions; logarithmic Klein-Gordon; logarithmic Schrödinger; scalar field equations; fractional nonlinearitities},
language = {eng},
number = {3},
pages = {309-336},
publisher = {Gauthier-Villars},
title = {On the stability of solitary waves for classical scalar fields},
url = {http://eudml.org/doc/76381},
volume = {47},
year = {1987},
}
TY - JOUR
AU - Blanchard, Ph.
AU - Stubbe, J.
AU - Vázquez, L.
TI - On the stability of solitary waves for classical scalar fields
JO - Annales de l'I.H.P. Physique théorique
PY - 1987
PB - Gauthier-Villars
VL - 47
IS - 3
SP - 309
EP - 336
LA - eng
KW - stability; bound states of lowest action; nonlinear Klein-Gordon and Schrödinger equations; Shatah-Strauss formalism; existence; minimum action solutions; logarithmic Klein-Gordon; logarithmic Schrödinger; scalar field equations; fractional nonlinearitities
UR - http://eudml.org/doc/76381
ER -
References
top- [1] J. Stubbe, Constrained minimization problems in Orlicz-spaces with application to minimum action solutions of non-linear scalar field equations in RN. Bielefeld University, BI-TP 86/10, 1986.
- [2] J. Shatah, Stable Standing waves of Nonlinear Klein-Gordon equations. Comm. Math. Phys., t. 91, 1983, p. 313-327. Zbl0539.35067MR723756
- [3] J. Shatah and W. Strauss, Instability of nonlinear bound-States. Comm. Math. Phys., t. 100, 1985, p. 173-190. Zbl0603.35007MR804458
- [4] W. Strauss, Existence of solitary waves in higher dimensions. Comm. Math. Phys., t. 55, 1977, p. 149-162. Zbl0356.35028MR454365
- [5] H. Berestycki and P.L. Lions, Nonlinear Scalar Field Equations. I. Arch. Rat. Mech. Anal., t. 82, 1983, p. 313-345. Zbl0533.35029MR695535
- [6] H. Brezis and E.H. Lieb, Minimum Action Solution of some Vector field equation. Comm. Math. Phys., t. 96, 1984, p. 97-113. Zbl0579.35025MR765961
- [7] H. Pecher, Low energy scattering for nonlinear Klein-Gordon equations, preprint. MR795519
- [8] W. Strauss, On weak solutions of semilinear hyperbolic equations. An. Acad. brasil. Cienc., t. 42, 1970, p. 645-651. Zbl0217.13104MR306715
- [9] J. Ginibre and G. Velo, Non-linear evolution equations: Cauchy problem and scattering theory, BIBOS preprint 102/85, Bielefeld, 1985.
- [10] J. Ginibre and G. Velo, On a class of Nonlinear Schrödinger equations. I. The Cauchy problem, General case. J. Funct. Anal., t. 32, 1979, p. 1-32. Zbl0396.35028MR533218
- [11] T. Cazenave and A. Haraux, Équations d'évolution avec non linéarité logarithmique. Aunals. Fac. Sci. Univ. Toulouse, t. 2, 1980, p. 21-55. Zbl0411.35051MR583902
- [12] A. Haraux, Nonlinear Evolution Equations. Global Behaviour of Solutions. Lecture Notes in Mathematics, t. 841, Springer, Berlin, 1981. Zbl0461.35002MR610796
- [13] T.F. Morris, Classical confinement: field theories with spontaneously bounded domains. Had. J., t. 3, 1980, p. 1333-1359. Zbl0444.49038MR588061
- [14] G. Rosen, Dilation Covariance and Exact Solutions in Local Relativistic Field Theories. Phys. Rev., t. 183, 1969, p. 1186-1188.
- [15] I. Bialynicki-Birula and J. Michielsky, Wave Equations with Logarithmic Non–linearities. Bull. Acad. Pol. Sci. Cl. II., t. 23, 1975, p. 461-466. MR403458
- [16] T.F. Morris, Classical Theory of Klein-Gordon equations with logarithmic non–linearities. Can. Journ. Phys., t. 56, 1978, p. 1405-1411. Zbl1043.81526MR509820
- [17] I. Bialynicki-Birula and J. Michielsky, Nonlinear Wave Mechanics, Ann. of Phys., t. 100, 1976, p. 62-93. MR426670
- [18] G. Marques and I. Ventura, Resonances within nonperturbative methods in field theories. Phys. Rev., t. D 14, 1975, p. 1056-1059.
- [19] M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys., t. 87, 1983, p. 567-576. Zbl0527.35023MR691044
- [20] H. Berestycki and Th. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon nonlinéaires. C. R. Acad. Sc. Paris, t. 293, 1981, p. 489-492. Zbl0492.35010MR646873
- [21] T. Cazenave and P.L. Lions, Orbital Stability of Standing waves for some Nonlinear Schrödinger Equations. Comm. Math. Phys., t. 85, 1982, p. 549-561. Zbl0513.35007MR677997
- [22] M. Weinstein, Lyapunov Stability of Ground States of Nonlinear Dispersive Evolution equations. Comm. Pure Appl. Math., t. 39, 1986, p. 51-67. Zbl0594.35005MR820338
- [23] T. Cazenave, Stable solutions of the logarithmic Schrödinger equation. Nonlinear Analysis TMA, t. 7, 1983, p. 1127-1140. Zbl0529.35068MR719365
- [24] E.H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Stud. Appl. Math., t. 57, 1977, p. 93-105. Zbl0369.35022MR471785
- [25] G. Ginibre and G. Velo, On a class of nonlinear Schrödinger equation with nonlocal interaction. Math. Zeitschrift, t. 170, 1980, p. 109-136. Zbl0407.35063MR562582
- [26] Ph Blanchard, J. Stubbe and L. Vázquez, On the stability of nonlinear spinor fields, Phys. Rev. D, to appear. Zbl0649.35076
- [27] G.H. Derrick, Comments on nonlinear wave equations as models for elementary particles. J. Math. Phys., t. 5, 1964, p. 1252-1254. MR174304
- [28] M. Weinstein, Modulational stability of Ground states of nonlinear Schrödinger Equations. Siam J. Math. Anal., t. 16, 1985, p. 472-491. Zbl0583.35028MR783974
- [29] M. Grillakis, J. Shatah and W. Strauss, Stability Theory of Solitary Waves in the Presence of Symmetry, I. J. Funct. Anal., t. 74, 1987, p. 160-197. Zbl0656.35122MR901236
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.