Inverse scattering problem for the Maxwell equations outside moving body

Vladimir Georgiev

Annales de l'I.H.P. Physique théorique (1989)

  • Volume: 50, Issue: 1, page 37-70
  • ISSN: 0246-0211

How to cite

top

Georgiev, Vladimir. "Inverse scattering problem for the Maxwell equations outside moving body." Annales de l'I.H.P. Physique théorique 50.1 (1989): 37-70. <http://eudml.org/doc/76435>.

@article{Georgiev1989,
author = {Georgiev, Vladimir},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {scattering; acoustic waves; moving obstacles; leading singularity; scattering kernel; Maxwell's equations; micro-local parametrix},
language = {eng},
number = {1},
pages = {37-70},
publisher = {Gauthier-Villars},
title = {Inverse scattering problem for the Maxwell equations outside moving body},
url = {http://eudml.org/doc/76435},
volume = {50},
year = {1989},
}

TY - JOUR
AU - Georgiev, Vladimir
TI - Inverse scattering problem for the Maxwell equations outside moving body
JO - Annales de l'I.H.P. Physique théorique
PY - 1989
PB - Gauthier-Villars
VL - 50
IS - 1
SP - 37
EP - 70
LA - eng
KW - scattering; acoustic waves; moving obstacles; leading singularity; scattering kernel; Maxwell's equations; micro-local parametrix
UR - http://eudml.org/doc/76435
ER -

References

top
  1. [1] A. Bachelot et V. Petkov, Existence de l'opérateur de diffusion pour l'equation des ondes avec un potentiel périodique en temps, C. R. Acad. Sci. Paris, Série I, t. 303, 1986, p. 671-673. Zbl0611.35067MR870693
  2. [2] A. Bachelot et V. Petkov, Opérateurs d'ondes pour les systèmes hyperboliques avec un potentiel périodique en temps, Ann. Inst. Henri Poincare, Physique Théorique, t. 47, 1987, p. 383-428. Zbl0657.35102MR933684
  3. [3] J. Cooper and W. Strauss, Energy boundness and local energy decay of waves reflecting of a moving obstacle, Indiana Univ. Math. J., t. 25, 1976, p. 671-690. Zbl0348.35059MR415093
  4. [4] J. Cooper and W. Strauss, Representation of the scattering operator for moving obstacles, Indiana Univ. Math. J., t. 28, 1979, p. 643-671. Zbl0427.35056MR542950
  5. [5] J. Cooper and W. Strauss, Scattering of waves by periodically moving bodies, J. Funct. Anal., t. 47, 1982, p. 180-229. Zbl0494.35073MR664336
  6. [6] J. Cooper and W. Strauss, Abstract scattering theory for time periodic systems with applications to electromagnetism, Indiana Univ. Math. J., t. 34, 1985, p. 33-83. Zbl0582.47011MR773393
  7. [7] J. Cooper and W. Strauss, The leading singularity of a wave reflected by a moving boundary, J. Diff. Eq., t. 52, 1984, p. 175-203. Zbl0547.35075MR741267
  8. [8] J. Cooper and W. Strauss, The initial-boundary problem for the Maxwell equations in the presence of a moving body, SIAM, Journal Math. Anal., t. 16, 1985, p. 1165- 1179. Zbl0593.35069MR807903
  9. [9] J. Coper and W. Strauss, Unpiblished manuscript, 1985. 
  10. [10] I. Gelfand, M. Graev, H. Vilenkin, Integral geometry and associated questions of representation theory, Moscow, 1962 (in Russian). 
  11. [11] S. Helgason, The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds, Acta Math., t. 113, 1965, p. 153-180. Zbl0163.16602MR172311
  12. [12] L. Hörmander, The analysis of linear partial differential operators I, Distribution theory and Fourier Analysis, Springer Verlag, Berlin-Heidelberg-New York-Toronto, 1983. Zbl0521.35001MR717035
  13. [13] H. Iwashita, Spectral theory for symmetric systems in an exterior domain, preprint, to appear in Tsukuba, J. Math. Zbl0655.35059MR926454
  14. [14] H. Iwashita, Spectral theory for symmetric systems in an exterior domain. II. Part, preprint. Zbl0669.47003MR976314
  15. [15] T. Kato, Linear evolution equations of « hyperbolic » type, J. Fac. Sci. Univ. Tokyo, t. 17, 1970, p. 241-258. Zbl0222.47011MR279626
  16. [16] P. Lax and R. Phillips, Scattering Theory, Academic Press, New York, 1967. Zbl0186.16301MR217440
  17. [17] P. Lax and R. Phillips, Local boundary conditions for dissipative symmetric linear differential operators, Comm. Pure Appl. Math., t. 13, 1960, p. 427-455. Zbl0094.07502MR118949
  18. [18] A. Majda and S. Osher, Initial boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math., t. 28, 1975, p. 607-675. Zbl0314.35061MR410107
  19. [19] A. Majda, A representation formula for the scattering operator and the inverse problem for arbitrary bodies, Comm. Pure Appl. Math., t. 30, 1977, p. 165-194. Zbl0335.35076MR435625
  20. [20] A. Majda and M. Taylor, Inverse scattering problems for transparant obstacles, electromagnetic waves and hyperbolic systems, Comm. Part. Diff. Eq., t. 2, 1977, p. 395-438. Zbl0373.35055MR437946
  21. [21] R. Melrose, Forward scattering by a convex obstacle, Comm. Pure Appl. Math., t. 33,1980, p. 461-499. Zbl0435.35066MR575734
  22. [22] R. Melrose, Singularities and energy decay in acoustical scattering, Duke Math. J., t. 46, 1979, p. 43-59. Zbl0415.35050MR523601
  23. [23[ V. Petkov, Representation of the scattering operator for dissipative hyperbolic systems, Comm. PDE, t. 6, 1981, p. 993-1022. Zbl0464.35070MR627656
  24. [24] V. Petkov, Scattering theory for hyperbolic operators, Notas de Curso, n° 24, Departemento de Matematica, Universidade Federal de Pernambuco, Recife, 1987. MR912265
  25. [25] V. Petkov and Ts. Rangelov, Leading singularity of the scattering kernel, Comp. Rend. Acad. Sci. bulg., t. 40, n° 12, 1987, p. 5-8. Zbl0657.35106MR937109
  26. [26] J. Rauch and F. Massey, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc., t. 189, 1974, p. 303-318. Zbl0282.35014MR340832
  27. [27] J. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity, Trans. Amer. Math. Soc., t. 291, 1985, p. 167-187. Zbl0549.35099MR797053
  28. [28] G. Schmidt, Spectral and scattering theory for Maxwell's equations in an exterior domain, Arch. Rat. Mech. Anal., t. 28, 1975, p. 284-322. Zbl0155.43502
  29. [29] H. Soga, Singularities of the scattering kernel for convex obstacles, J. Math. Kyoto Univ., t. 22, 1983, p. 729-765. Zbl0511.35070MR685528
  30. [30] M. Taylor, Pseudodifferential Operators, Princeton University Press, Princeton, New Jersey, 1981. Zbl0453.47026MR618463
  31. [31] M. Taylor, Reflection of singularities of solutions to systems of differential equations, CPAM, t. 27, 1975, p. 457-478. Zbl0332.35058MR509098
  32. [32] R. Utiama, Theory of Relativity, Iwanami, 1977 (in Japan). 
  33. [33] J. Van Bladel, Electromagnetic fields in the presence of rotation bodies, Proc. IEEE, t. 64, 1976, p. 301-318. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.