Commuting normal operators in partial -algebras
Annales de l'I.H.P. Physique théorique (1989)
- Volume: 50, Issue: 2, page 161-185
- ISSN: 0246-0211
Access Full Article
topHow to cite
topAntoine, J.-P., and Karwowski, W.. "Commuting normal operators in partial $L^2 (\mathbb {R}^2)$-algebras." Annales de l'I.H.P. Physique théorique 50.2 (1989): 161-185. <http://eudml.org/doc/76442>.
@article{Antoine1989,
author = {Antoine, J.-P., Karwowski, W.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {spectral resolution; commutant of a family of commuting normal operators; multiplicity; Fuglede commutation theorem; spectral multiplicity for unbounded normal; strong commutativity; dense common domain consisting of analytic vectors; unbounded operator algebras},
language = {eng},
number = {2},
pages = {161-185},
publisher = {Gauthier-Villars},
title = {Commuting normal operators in partial $L^2 (\mathbb \{R\}^2)$-algebras},
url = {http://eudml.org/doc/76442},
volume = {50},
year = {1989},
}
TY - JOUR
AU - Antoine, J.-P.
AU - Karwowski, W.
TI - Commuting normal operators in partial $L^2 (\mathbb {R}^2)$-algebras
JO - Annales de l'I.H.P. Physique théorique
PY - 1989
PB - Gauthier-Villars
VL - 50
IS - 2
SP - 161
EP - 185
LA - eng
KW - spectral resolution; commutant of a family of commuting normal operators; multiplicity; Fuglede commutation theorem; spectral multiplicity for unbounded normal; strong commutativity; dense common domain consisting of analytic vectors; unbounded operator algebras
UR - http://eudml.org/doc/76442
ER -
References
top- [1] R.T. Powers, Commun. Math. Phys., t. 21, 1971, p. 85 ; Trans. Amer. Math. Soc., t. 187, 1974, p. 261. Zbl0214.14102MR283580
- [2] G. Lassner, Reports Math. Phys., t. 3, 1972, p. 279 ; Wiss. Z. Karl-Marx-Univ. Leipzig, Math.-Naturwiss. R., t. 24, 1975, p. 465 ; t. 30, 1981, p. 572. Zbl0252.46087MR322527
- [3] J.-P. Antoine and W. Karwowski, Publ. RIMS, Kyoto Univ., t. 21, 1985, p. 205; Add. ibid., t. 22, 1986, p. 507. Zbl0609.47058MR861779
- [4] J.-P. Antoine and F. Mathot, Ann. Inst. H. Poincaré, t. 46, 1987, p. 299. Zbl0629.46048MR892367
- [5] J.-P. Antoine and G. Lassner, Representations of partial *-algebras and sesquilinear forms (unpublished).
- [6] J.-P. Antoine, In: Spontaneous Symmetry Breakdown and Related Topics (Karpacz, 1985), p. 247-267 ; L. Michel, J. Mozrzymas and A. Pekalski (eds.) ; World Scientific, Singapore, 1985. MR835511
- [7] J.-P. Antoine, F. Mathot and C. Trapani, Ann. Inst. H. Poincaré, t. 46, 1987, p. 325. Zbl0629.46049MR892368
- [8] G. Epifanio and C. Trapani, J. Math. Phys., t. 25, 1984, p. 2633. Zbl0556.47026MR756559
- [9] E. Nelson, Ann. Math., t. 70, 1959, p. 572. Zbl0091.10704MR107176
- [10] M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis. II. Fourier Analysis, Self-adjointness, Academic, New York, 1972, 1975 . Zbl0242.46001MR493419
- [11] K. Schmüdgen, Acta Sci. Math. (Szeged), t. 47, 1984, p. 131 ; Manuscr. Math., t. 57, 1985, p. 221 ; Math. Nachr., t. 125, 1986, p. 83. K. Schmüdgen and J. Friedrich, J. Int. Eq. and Oper. Th., t. 7, 1984, p. 815. Zbl0576.47014
- [12] P.E.T. Jörgensen and R.T. Moore, Operator Commutation Relations, Reidel, Dordrecht and Boston, 1984. P.E.T. Jörgensen, J. Math. Anal. Appl., t. 123, 1987, p. 508. Zbl0626.47042MR746138
- [13] J.-P. Antoine, G. Epifanio and C. Trapani, Helv. Phys. Acta, t. 56, 1983, p. 1175. MR734580
- [14] J.-P. Antoine, A. Inoue and C. Trapani, Partial *-algebras of closable operators. I. The general theory and the abelian case, preprint UCL-IPT-88-25 (to be published). Zbl0724.47020
- [15] J. Roberts, J. Math. Phys., t. 7, 1966, p. 1097 ; Commun. Math. Phys., t. 3, 1966, p. 98. Zbl0144.23404MR216836
- [16] A. Böhm. BoulderLectures in Theoretical Physics, t. 9A, 1966, p. 255 ; The Rigged Hilbert Space and Quantum Mechanics, Lecture Notes in Physics, t. 78, Springer, Berlin, 1978. Zbl0388.46045
- [17] J.-P. Antoine, J. Math. Phys., t. 10, 1969, p. 53 et 2276. Zbl0172.56602
- [18] F. Riesz and B. Sz. Nagy, Leçons d'Analyse Fonctionnelle, Gauthier-Villars, Paris and Akadémiai Kiado, Budapest, 1968.
- [19] N.I. Akhiezer and I.M. Glazman, Theory of Linear Operators in Hilbert Spaces, I, II. F. Ungar, New York, 1966. Zbl0098.30702
- [20] J. Weidmann, Linear Operators in Hilbert Spaces, Springer, Berlin, 1980. Zbl0434.47001MR566954
- [21] I.M. Gelfand and N.Y. Vilenkin, Les Distributions, t. 4, Dunod, Paris, 1967. Zbl0179.18502
- [22] J.M. Jauch and B. Misra, Helv. Phys. Acta, t. 38, 1965, p. 30. Zbl0138.43703MR209878
- [23] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (algèbres de von Neumann), Gauthier-Villars, Paris, 1957. Zbl0088.32304MR94722
- [24] O.A. Nielsen, Direct Integral Theory, Marcel Dekker, New York, 1980. Zbl0482.46037MR591683
- [25] J.-P. Antoine, A. Inoue and C. Trapani, Partial *-algebras of closable operators. II-IV (in preparation). Zbl0857.47029
- [26] C.R. Putnam, Commutation Properties of Hilbert Space Operators and Related Topics, Springer, Berlin, 1967. Zbl0149.35104
- [27] F. Mathot, J. Math. Phys., t. 26, 1985, p. 1118. Zbl0614.47034MR790044
- [28] W.G. Faris, Self-Adjoint Operators, Lect. Notes Math., t. 433, Springer, Berlin, 1975. Zbl0317.47016MR467348
- [29] P.R. Halmos, Measure Theory, Van Nostrand, Princeton, 1950. Zbl0040.16802MR33869
- [30] P.R. Halmos, Naive Set Theory, Van Nostrand, Princeton, 1961. Zbl0087.04403MR114756
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.