Commuting normal operators in partial L 2 ( 2 ) -algebras

J.-P. Antoine; W. Karwowski

Annales de l'I.H.P. Physique théorique (1989)

  • Volume: 50, Issue: 2, page 161-185
  • ISSN: 0246-0211

How to cite

top

Antoine, J.-P., and Karwowski, W.. "Commuting normal operators in partial $L^2 (\mathbb {R}^2)$-algebras." Annales de l'I.H.P. Physique théorique 50.2 (1989): 161-185. <http://eudml.org/doc/76442>.

@article{Antoine1989,
author = {Antoine, J.-P., Karwowski, W.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {spectral resolution; commutant of a family of commuting normal operators; multiplicity; Fuglede commutation theorem; spectral multiplicity for unbounded normal; strong commutativity; dense common domain consisting of analytic vectors; unbounded operator algebras},
language = {eng},
number = {2},
pages = {161-185},
publisher = {Gauthier-Villars},
title = {Commuting normal operators in partial $L^2 (\mathbb \{R\}^2)$-algebras},
url = {http://eudml.org/doc/76442},
volume = {50},
year = {1989},
}

TY - JOUR
AU - Antoine, J.-P.
AU - Karwowski, W.
TI - Commuting normal operators in partial $L^2 (\mathbb {R}^2)$-algebras
JO - Annales de l'I.H.P. Physique théorique
PY - 1989
PB - Gauthier-Villars
VL - 50
IS - 2
SP - 161
EP - 185
LA - eng
KW - spectral resolution; commutant of a family of commuting normal operators; multiplicity; Fuglede commutation theorem; spectral multiplicity for unbounded normal; strong commutativity; dense common domain consisting of analytic vectors; unbounded operator algebras
UR - http://eudml.org/doc/76442
ER -

References

top
  1. [1] R.T. Powers, Commun. Math. Phys., t. 21, 1971, p. 85 ; Trans. Amer. Math. Soc., t. 187, 1974, p. 261. Zbl0214.14102MR283580
  2. [2] G. Lassner, Reports Math. Phys., t. 3, 1972, p. 279 ; Wiss. Z. Karl-Marx-Univ. Leipzig, Math.-Naturwiss. R., t. 24, 1975, p. 465 ; t. 30, 1981, p. 572. Zbl0252.46087MR322527
  3. [3] J.-P. Antoine and W. Karwowski, Publ. RIMS, Kyoto Univ., t. 21, 1985, p. 205; Add. ibid., t. 22, 1986, p. 507. Zbl0609.47058MR861779
  4. [4] J.-P. Antoine and F. Mathot, Ann. Inst. H. Poincaré, t. 46, 1987, p. 299. Zbl0629.46048MR892367
  5. [5] J.-P. Antoine and G. Lassner, Representations of partial *-algebras and sesquilinear forms (unpublished). 
  6. [6] J.-P. Antoine, In: Spontaneous Symmetry Breakdown and Related Topics (Karpacz, 1985), p. 247-267 ; L. Michel, J. Mozrzymas and A. Pekalski (eds.) ; World Scientific, Singapore, 1985. MR835511
  7. [7] J.-P. Antoine, F. Mathot and C. Trapani, Ann. Inst. H. Poincaré, t. 46, 1987, p. 325. Zbl0629.46049MR892368
  8. [8] G. Epifanio and C. Trapani, J. Math. Phys., t. 25, 1984, p. 2633. Zbl0556.47026MR756559
  9. [9] E. Nelson, Ann. Math., t. 70, 1959, p. 572. Zbl0091.10704MR107176
  10. [10] M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis. II. Fourier Analysis, Self-adjointness, Academic, New York, 1972, 1975 . Zbl0242.46001MR493419
  11. [11] K. Schmüdgen, Acta Sci. Math. (Szeged), t. 47, 1984, p. 131 ; Manuscr. Math., t. 57, 1985, p. 221 ; Math. Nachr., t. 125, 1986, p. 83. K. Schmüdgen and J. Friedrich, J. Int. Eq. and Oper. Th., t. 7, 1984, p. 815. Zbl0576.47014
  12. [12] P.E.T. Jörgensen and R.T. Moore, Operator Commutation Relations, Reidel, Dordrecht and Boston, 1984. P.E.T. Jörgensen, J. Math. Anal. Appl., t. 123, 1987, p. 508. Zbl0626.47042MR746138
  13. [13] J.-P. Antoine, G. Epifanio and C. Trapani, Helv. Phys. Acta, t. 56, 1983, p. 1175. MR734580
  14. [14] J.-P. Antoine, A. Inoue and C. Trapani, Partial *-algebras of closable operators. I. The general theory and the abelian case, preprint UCL-IPT-88-25 (to be published). Zbl0724.47020
  15. [15] J. Roberts, J. Math. Phys., t. 7, 1966, p. 1097 ; Commun. Math. Phys., t. 3, 1966, p. 98. Zbl0144.23404MR216836
  16. [16] A. Böhm. BoulderLectures in Theoretical Physics, t. 9A, 1966, p. 255 ; The Rigged Hilbert Space and Quantum Mechanics, Lecture Notes in Physics, t. 78, Springer, Berlin, 1978. Zbl0388.46045
  17. [17] J.-P. Antoine, J. Math. Phys., t. 10, 1969, p. 53 et 2276. Zbl0172.56602
  18. [18] F. Riesz and B. Sz. Nagy, Leçons d'Analyse Fonctionnelle, Gauthier-Villars, Paris and Akadémiai Kiado, Budapest, 1968. 
  19. [19] N.I. Akhiezer and I.M. Glazman, Theory of Linear Operators in Hilbert Spaces, I, II. F. Ungar, New York, 1966. Zbl0098.30702
  20. [20] J. Weidmann, Linear Operators in Hilbert Spaces, Springer, Berlin, 1980. Zbl0434.47001MR566954
  21. [21] I.M. Gelfand and N.Y. Vilenkin, Les Distributions, t. 4, Dunod, Paris, 1967. Zbl0179.18502
  22. [22] J.M. Jauch and B. Misra, Helv. Phys. Acta, t. 38, 1965, p. 30. Zbl0138.43703MR209878
  23. [23] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (algèbres de von Neumann), Gauthier-Villars, Paris, 1957. Zbl0088.32304MR94722
  24. [24] O.A. Nielsen, Direct Integral Theory, Marcel Dekker, New York, 1980. Zbl0482.46037MR591683
  25. [25] J.-P. Antoine, A. Inoue and C. Trapani, Partial *-algebras of closable operators. II-IV (in preparation). Zbl0857.47029
  26. [26] C.R. Putnam, Commutation Properties of Hilbert Space Operators and Related Topics, Springer, Berlin, 1967. Zbl0149.35104
  27. [27] F. Mathot, J. Math. Phys., t. 26, 1985, p. 1118. Zbl0614.47034MR790044
  28. [28] W.G. Faris, Self-Adjoint Operators, Lect. Notes Math., t. 433, Springer, Berlin, 1975. Zbl0317.47016MR467348
  29. [29] P.R. Halmos, Measure Theory, Van Nostrand, Princeton, 1950. Zbl0040.16802MR33869
  30. [30] P.R. Halmos, Naive Set Theory, Van Nostrand, Princeton, 1961. Zbl0087.04403MR114756

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.