*-algebras of unbounded operators affiliated with a von Neumann algebra.
The relationships between the JB*-triple structure of a complex spin factor S and the structure of the Hilbert space H associated to S are discussed. Every surjective linear isometry L of S can be uniquely represented in the form L(x) = mu.U(x) for some conjugation commuting unitary operator U on H and some mu belonging to C, |mu|=1. Automorphisms of S are characterized as those linear maps (continuity not assumed) that preserve minimal tripotents in S and the orthogonality relations among them.
We present a new method for studying the numerical radius of bounded operators on Hilbert -modules. Our method enables us to obtain some new results and generalize some known theorems for bounded operators on Hilbert spaces to bounded adjointable operators on Hilbert -module spaces.
The aim of this paper is to start a systematic investigation of the existence of angular limits and angular derivatives of holomorphic maps of infinite dimensional Siegel domains in -algebras. Since -algebras are natural generalizations of -algebras, -algebras, -algebras, ternary algebras and complex Hilbert spaces, various significant results follow. Examples are given.