RAGE theorem for power bounded operators and decay of local energy for moving obstacles
Vesselin M. Petkov; Vladimir S. Georgiev
Annales de l'I.H.P. Physique théorique (1989)
- Volume: 51, Issue: 2, page 155-185
- ISSN: 0246-0211
Access Full Article
topHow to cite
topPetkov, Vesselin M., and Georgiev, Vladimir S.. "RAGE theorem for power bounded operators and decay of local energy for moving obstacles." Annales de l'I.H.P. Physique théorique 51.2 (1989): 155-185. <http://eudml.org/doc/76463>.
@article{Petkov1989,
author = {Petkov, Vesselin M., Georgiev, Vladimir S.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {local energy decay; periodically moving non-trapping obstacle; monodromy; scattering operator},
language = {eng},
number = {2},
pages = {155-185},
publisher = {Gauthier-Villars},
title = {RAGE theorem for power bounded operators and decay of local energy for moving obstacles},
url = {http://eudml.org/doc/76463},
volume = {51},
year = {1989},
}
TY - JOUR
AU - Petkov, Vesselin M.
AU - Georgiev, Vladimir S.
TI - RAGE theorem for power bounded operators and decay of local energy for moving obstacles
JO - Annales de l'I.H.P. Physique théorique
PY - 1989
PB - Gauthier-Villars
VL - 51
IS - 2
SP - 155
EP - 185
LA - eng
KW - local energy decay; periodically moving non-trapping obstacle; monodromy; scattering operator
UR - http://eudml.org/doc/76463
ER -
References
top- [1] A. Bachelot and V. Petkov, Existence des opérateurs d'ondes pour les systèmes hyperboliques avec un potentiel périodique en temps, Ann. Inst. Henri Poincaré (Physique théorique) t. 47, n° 4, 1987, pp. 383-428. Zbl0657.35102MR933684
- [2] J. Cooper and W. Strauss, Energy Boundness and Local Energy Decay of Waves Reflecting off a Moving Obstacle, Indiana Univ. Math. J., t. 25, 1976, pp. 671-690. Zbl0348.35059MR415093
- [3] J. Cooper and W. Strauss, Representation of the Scattering Operator for Moving Obstacles, Indiana Univ. Math. J., t. 28, 1979, pp. 643-671. Zbl0427.35056MR542950
- [4] J. Cooper and W. Strauss, Scattering of Waves by Periodically Moving Bodies, J. Funct. Anal., t, 47, 1982, pp. 180-229. Zbl0494.35073MR664336
- [5] J. Cooper and W. Strauss, Abstract Scattering Theory for Time Periodic Systems with Applications to Electromagnetism, Indiana Univ. Math. J., t. 34, 1985, pp. 33-83. Zbl0582.47011MR773393
- [6] J. Cooper and W. Strauss, The Initial Boundary Problem for the Maxwell Equations in the Presence of a Moving Body, S.I.A.M. J. Math. Anal., t. 16, No. 6, 1985, pp. 1165-1179. Zbl0593.35069MR807903
- [7] N. Dunford and J. Schwartz, Linear Operators, Part III, Spectral Operators, Wiley Interseciences, New York, 1971. Zbl0243.47001MR412888
- [8] V. Georgiev and V. Petkov, Théorème de type RAGE pour des opérateurs à puissances bornées, C.R. Acad. Sci. Paris, T. 303, série I, 1986, pp. 605-608. Zbl0603.47001MR867547
- [9] V. Georgiev, Uniform Boundness of the Energy for Time Periodic Potentials, Conference on Operator Theory, Timichoara, 1988, (to appear). Zbl0704.35112MR1090126
- [10] L. Hörmander, The Analysis of Linear Partial Differential Operators III, Springer-Verlag, Berlin, Heidelberg, 1985. Zbl0601.35001MR781536
- [11] P. Lax and R. Phillips, Scattering Theory, Academic Press, 1967. Zbl0186.16301
- [12] P. Lax and R. Phillips, Scattering Theory for the Acoustical Equation in an Even Number of Space Dimensions, Indiana Univ, Math. J., t. 22, 1972, pp. 101-134. Zbl0236.35036MR304882
- [13] P. Lax and R. Phillips, Scattering Theory for Dissipative Systems, J. Funct. Anal., t. 14, 1973, pp. 172-233. Zbl0295.35069
- [14] R. Melrose, Singularities and Energy Decay in Acoustical Scattering, Duke Math. J., T. 46, 1979, pp. 43-59. Zbl0415.35050MR523601
- [15] R. Melrose and J. Sjöstrand, Singularities of Boundary Value Problems I, II, Comm. Pure Appl. Math., t. 31, 1978, pp. 593-617; t. 35, 1982, pp. 129-168. Zbl0368.35020MR492794
- [16] C. Morawetz, J. Ralston and W. Strauss, Decay of Solutions of the Wave Equation Outside Non-Tapping Obstacles, Comm. Pure Appl. Math., t. 30, 1977, pp. 447-508. Zbl0372.35008MR509770
- [17] V. Petkov, Scattering Theory for Mixed Problems in the Exteriour of Moving Obstacles, pp. 141-155 in Hyperbolic Equations, F. COLOMBINI and M. K. V. MURTHY Ed., Pitman Research Notes in Mathematics Series, 158, Longman Scientific & Technical, 1987. Zbl0732.35065
- [18] V. Petkov, Les problèmes inverses de diffusion pour les perturbations dépendant du temps, Séminaire Équations aux Dérivées Partielles, Exposé n° XX, École Polytechnique, 1987-1988. Zbl0682.35103MR1018192
- [19] V. Petkov, Scattering Theory for Hyperbolic Operators, North-Holland, Amsterdam, 1989. Zbl0687.35067
- [20] G. Popov and Tzv. Rangelov, On the Exponential Growth of the Local Energy for Periodically Moving Obstacles, Osana J. Math. (to appear). Zbl0707.35084
- [21] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. III, Scattering Theory, Academic Press, New York, 1979. Zbl0405.47007MR529429
- [22] B. Simon, Phase Space Analysis of Simple Scattering Systems: Extension of Some Work of Enss, Duke Math. J., t. 46, 1979, pp. 119-168. Zbl0402.35076MR523604
- [23] W. Strauss, The Existence of the Scattering Operator for Moving Obstacles, J. Funct. Anal., t. 31, 1979, pp. 255-262. Zbl0457.35049MR525956
- [24] B.R. Vainberg, Asymptotic Methods for the Equations of the Mathematical Physics, Moscow University, 1982 (in Russian). Zbl0518.35002MR700559
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.