Distortion analyticity for two-body Schrödinger operators
Annales de l'I.H.P. Physique théorique (1990)
- Volume: 53, Issue: 2, page 149-157
- ISSN: 0246-0211
Access Full Article
topHow to cite
topNakamura, S.. "Distortion analyticity for two-body Schrödinger operators." Annales de l'I.H.P. Physique théorique 53.2 (1990): 149-157. <http://eudml.org/doc/76499>.
@article{Nakamura1990,
author = {Nakamura, S.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {complex distortion; Schrödinger operator; exponentially decaying potentials; semiclassical resonances},
language = {eng},
number = {2},
pages = {149-157},
publisher = {Gauthier-Villars},
title = {Distortion analyticity for two-body Schrödinger operators},
url = {http://eudml.org/doc/76499},
volume = {53},
year = {1990},
}
TY - JOUR
AU - Nakamura, S.
TI - Distortion analyticity for two-body Schrödinger operators
JO - Annales de l'I.H.P. Physique théorique
PY - 1990
PB - Gauthier-Villars
VL - 53
IS - 2
SP - 149
EP - 157
LA - eng
KW - complex distortion; Schrödinger operator; exponentially decaying potentials; semiclassical resonances
UR - http://eudml.org/doc/76499
ER -
References
top- [1] F. Aguilar and J.M. Combes, On a Class of Analytic Perturbations of One-Body Schrödinger Operators, Commun. Math. Phys., 1971, Vol. 22, pp.269-279. Zbl0219.47011MR345551
- [2] D. Babbit and E. Balslev, Local Distortion Techniques and Unitarity of the S-Matrix for 2-Body Problem, J. Funct. Anal., 1975, Vol. 18, pp. 1-14. MR413860
- [3] E. Balslev, Analyticity Properties of Eigenfunctions and Scattering Matrix, Commun. Math. Phys., 1988, Vol. 114, pp. 599-612. Zbl0662.35079MR929132
- [4] E. Balslev and J.M. Combes, Spectral Properties of Many-Body Schrödinger Operators with Dilation-Analytic Interactions, Commun. Math. Phys., 1971, Vol. 22, pp. 280- 299. Zbl0219.47005MR345552
- [5] E. Balslev and E. Skibsted, Resonance Theory for Two-Body Schrödinger Operators (to appear). Zbl0714.35063MR1033614
- [6] J.M. Combes, P. Duclos, M. Klein and R. Seiler, The Shape Resonance, Commun. Math. Phys., 1987, Vol. 110, pp. 215-236. Zbl0629.47044MR887996
- [7] H.L. Cycon, Resonances Defined by Modified Dilations, Helv. Phys. Acta, 1989, Vol. 58, pp. 969-987. MR821113
- [7] H.L. Cycon, R.G. Froese, W. Kirsch and B. Simon, Schrödinger Operators, with Applications to Quantum Mechanics and Global Geometry, Berlin, Springer-Verlag, 1987. Zbl0619.47005MR883643
- [9] B. Helffer and J. Sjöstrand, Resonances en limite semi-classique, Suppl. Bull. Soc. Math. France, 1986, Vol. 114. Zbl0631.35075
- [10] W. Hunziker, Distortion Analyticity and Molecular Resonance Curves, Ann. Inst. Henri Poincaré, 1986, Vol. 45, pp. 339-358. Zbl0619.46068MR880742
- [11] K. Jorgens, Linear Integral Operators, London, Pitman, 1982. Zbl0499.47029MR647629
- [12] S. Nakamura, Shape Resonances for Distortion Analytic Schrödinger Operators, Commun. P.D.E., Vol. 14, 1989, pp. 1385-1419. Zbl0699.35204MR1022991
- [13] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vols. I-IV, New York, Academic Press, 1972-1979. MR493419
- [14] I.M. Sigal, Complex Transformation Method and Resonances in One-Body Quantum Systems, Ann. Inst. Henri Poincaré, 1984, Vol. 41, pp. 103-114. Zbl0568.47008MR760129
- [15] B. Simon, The Definition of Molecular Resonance Curves by the Method of Exterior Complex Scalong, Phys. Lett., 1979, Vol. 71A, pp.211-214.
- [16] M. Taylor, Pseudodifferential Operators, New Jersey, Princeton Univ. Press, 1981. Zbl0453.47026
- [17] P. Hislop and I.M. Sigal, Shape Resonances in Quantum Mechanics, Differential Equation and Mathematical Physics, I. KNOWLES and Y. SAITO Eds., Lect. Notes Math., 1987, Vol. 1285. Zbl0653.46074MR921268
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.