Distortion analyticity and molecular resonance curves

W. Hunziker

Annales de l'I.H.P. Physique théorique (1986)

  • Volume: 45, Issue: 4, page 339-358
  • ISSN: 0246-0211

How to cite

top

Hunziker, W.. "Distortion analyticity and molecular resonance curves." Annales de l'I.H.P. Physique théorique 45.4 (1986): 339-358. <http://eudml.org/doc/76343>.

@article{Hunziker1986,
author = {Hunziker, W.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Resonance energies; discrete eigenvalues of non-selfadjoint operators; complex distortions; bound state; resonance; existence and uniqueness of solutions to the Schrödinger equation for n electrons in the time- dependent field of classically moving (non-colliding) nuclei},
language = {eng},
number = {4},
pages = {339-358},
publisher = {Gauthier-Villars},
title = {Distortion analyticity and molecular resonance curves},
url = {http://eudml.org/doc/76343},
volume = {45},
year = {1986},
}

TY - JOUR
AU - Hunziker, W.
TI - Distortion analyticity and molecular resonance curves
JO - Annales de l'I.H.P. Physique théorique
PY - 1986
PB - Gauthier-Villars
VL - 45
IS - 4
SP - 339
EP - 358
LA - eng
KW - Resonance energies; discrete eigenvalues of non-selfadjoint operators; complex distortions; bound state; resonance; existence and uniqueness of solutions to the Schrödinger equation for n electrons in the time- dependent field of classically moving (non-colliding) nuclei
UR - http://eudml.org/doc/76343
ER -

References

top
  1. [1] P. Aventini, R. Seiler, On the electronic spectrum of the diatomic molecular ion. Commun. Math. Phys., t. 41, 1975, p. 119-134. MR371301
  2. [2] E. Balslev, J.M. Combes, Spectral properties of many-body Schrödinger operators with dilation analytic interactions. Commun. Math. Phys., t. 22, 1971, p. 280-294. Zbl0219.47005MR345552
  3. [3] J.M. Combes, P. Duclos, R. Seiler, The Born-Oppenheimer approximation, in: Rigorous atomic and molecular physics, Eds. G. Velo and A. S. Wightman. New York, London, Plenum Press, 1981. 
  4. [4] H.L. Cycon, Resonances defined by modified dilations. Helv. Phys. Acta, t. 58, 1985, p. 969-981. MR821113
  5. [5] P. Deift, W. Hunziker, B. Simon, E. Vock, Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems. IV. Commun. Math. Phys,, t. 64, 1978, p. 1-34. Zbl0419.35079MR516993
  6. [6] R. Froese, I. Herbst, Exponential bounds and absence of positive eigenvalues for N-body Schrödinger operators. Commun. Math. Phys., t. 87, 1983, p. 429-447. Zbl0509.35061MR682117
  7. [7] W. Hunziker, C. Günther, Bound states in dipole fields and continuity properties of electronic spectra. Helv. Phys. Acta, t. 53, 1980, p. 201-208. MR597559
  8. [8] T. Kato, Perturbation theory for linear operators. Berlin, Heidelberg, New York, Springer, 1966. Zbl0148.12601MR203473
  9. [9] M. Klaus, On H2+ for small internuclear separation. J. Phys. A : Math. Gen., t. 16, 1983, p. 2709-2720. MR715732
  10. [10] M. Reed, B. Simon, Methods of modern mathematical physics. IV. Analysis of operators. New York, Academic Press, 1978. Zbl0401.47001MR493421
  11. [11] I.M. Sigal, Complex transformation method and resonances in one-body quantum systems. Ann. Inst. Henri Poincaré, t. 41, 1984, p. 103-114. Zbl0568.47008MR760129
  12. [12] B. Simon, The definition of molecular resonance curves by the method of exterior complex scaling. Phys. Lett., t. 71A, 1979, p. 211-214. 
  13. [13] T. Kato, Integration of the equation of evolution in a Banach space, J. Math. Soc. Japan, t. 5, 1953, p. 208-234. Zbl0052.12601MR58861
  14. [14] U. Wüller, Existence of the time evolution for Schrödinger operators with time dependent singular potentials. Ann. Inst. Henri Poincaré, t. 44, 1986, p. 155-171. Zbl0598.35033MR839282
  15. [15] K. Yajima, Existence of solutions for Schrödinger evolution equations. University of Tokyo, preprint, 1986. MR891945
  16. [16] K. Yosida, Functional analysis. New York, Academic Press, 1965. Zbl0126.11504MR180824

Citations in EuDML Documents

top
  1. C. Gérard, Prolongement méromorphe de la matrice de scattering pour des problèmes à deux corps à longue portée
  2. George A. Hagedorn, Analysis of a nontrivial, explicitly solvable multichannel scattering system
  3. Erik Balslev, Erik Skibsted, Asymptotic and analytic properties of resonance functions
  4. T. Kato, K. Yajima, Dirac equations with moving nuclei
  5. Xue-Ping Wang, Resonances of N-body Schrödinger operators with stark effect
  6. Shu Nakamura, On an example of phase-space tunneling
  7. Antoine Bommier, Prolongement méromorphe de la matrice de diffusion pour les problèmes à N corps à longue portée
  8. J. Sjöstrand, Estimations sur les résonances pour le laplacien avec une perturbation à support compact
  9. P. Duclos, P. Exner, P. Šťovíček, Curvature-induced resonances in a two-dimensional Dirichlet tube
  10. S. Nakamura, Distortion analyticity for two-body Schrödinger operators

NotesEmbed ?

top

You must be logged in to post comments.