On the homomorphisms of sum logics
S. Pulmannová; A. Dvurečenskij
Annales de l'I.H.P. Physique théorique (1991)
- Volume: 54, Issue: 2, page 223-228
- ISSN: 0246-0211
Access Full Article
topHow to cite
topPulmannová, S., and Dvurečenskij, A.. "On the homomorphisms of sum logics." Annales de l'I.H.P. Physique théorique 54.2 (1991): 223-228. <http://eudml.org/doc/76530>.
@article{Pulmannová1991,
author = {Pulmannová, S., Dvurečenskij, A.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {orthomodular -lattice; sum logic; -homomorphism; lattice homomorphism; Hilbert space logics; projective logics; von Neumann algebras},
language = {eng},
number = {2},
pages = {223-228},
publisher = {Gauthier-Villars},
title = {On the homomorphisms of sum logics},
url = {http://eudml.org/doc/76530},
volume = {54},
year = {1991},
}
TY - JOUR
AU - Pulmannová, S.
AU - Dvurečenskij, A.
TI - On the homomorphisms of sum logics
JO - Annales de l'I.H.P. Physique théorique
PY - 1991
PB - Gauthier-Villars
VL - 54
IS - 2
SP - 223
EP - 228
LA - eng
KW - orthomodular -lattice; sum logic; -homomorphism; lattice homomorphism; Hilbert space logics; projective logics; von Neumann algebras
UR - http://eudml.org/doc/76530
ER -
References
top- [1] D. Aerts and I. Daubechies, About the Structure Preserving Maps of a QuantumMechanical Proposition System, Helv. Phys. Acta, Vol. 51, 1978, pp. 637-660. MR542797
- [2] D. Aerts and I. Daubechies, Simple Proof that the Structure Preserving Maps Between Quantum Mechanical Propositional Systems Conserve the Angles, Helv. Phys. Acta, Vol. 56, 1983, pp. 1187-1190. MR734581
- [3] A. DVUREčENSKIJ, Generalization of Maeda's Theorem, Int. J. Theor. Phys., Vol. 25, 1986, pp. 1117-1124. Zbl0618.46053MR868372
- [4] H. Dye, On the Geometry of Projections in Certain Operator Algebras, Ann. Math., Vol. 61, 1955, pp. 73-89. Zbl0064.11002MR66568
- [5] S. Gudder, Spectral Methods for a Generalized Probability Theory, Trans. Am. Math. Soc., Vol. 119, 1965, pp. 428-442. Zbl0161.46105MR183657
- [6] S. Gudder, Uniqueness and Existence Properties of Bounded Observables, Pac. J. Math., Vol. 19, 1966, pp. 81-93, pp. 588-589. Zbl0149.23603MR201146
- [7] J. Hamhalter, Orthogonal Vector Measures, Proc. 2nd Winter School on Measure Theory, Liptovský Ján 1990 (to appear). Zbl0755.46029MR1118406
- [8] R. Jajte and A. Paszkiewicz, Vector Measures on the Closed Subspaces of a Hilbert Space, Studia Math., Vol. 63, 1978, pp. 229-251. Zbl0407.46058MR632053
- [9] P. Kruszynski, Extensions of Gleason Theorem, Quantum Probability and Applications to Quantum Theory of Irreversible Processes, Proc. Villa Mondragone, 1982, LNM 1055, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984, pp. 210-227. Zbl0573.46038MR782906
- [10] P. Kruszynski, Vector Measures on Orthocomplemented Lattices, Math. Proceedings, Vol. A 91, 1988, pp. 427-442. Zbl0819.46036MR976526
- [11] T. Matolczi, Tensor Product of Hilbert Lattices and Free Orthodistributive Product of Orthomodular Lattices, Acta Sci. Math., Vol. 37, 1975, pp. 263-272. Zbl0342.06005MR388122
- [12] S. Pulmannová and A. DVUREčENSKIJ, Sum Logics, Vector-Valued Measures and Representations, Ann. Inst. Henri Poincaré, Phys. Théor., Vol. 53, 1990, pp. 83-95. Zbl0742.46030MR1077466
- [13] V. Varadarajan, Geometry of Quantum Theory, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1985. Zbl0581.46061MR805158
- [14] R. Wright, The Structure of Projection-Valued States, a Generalization of Wigner's Theorem, Int. J. Theor. Phys., Vol. 16, 1977, pp. 567-573. Zbl0379.46054MR468859
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.