On the homomorphisms of sum logics

S. Pulmannová; A. Dvurečenskij

Annales de l'I.H.P. Physique théorique (1991)

  • Volume: 54, Issue: 2, page 223-228
  • ISSN: 0246-0211

How to cite

top

Pulmannová, S., and Dvurečenskij, A.. "On the homomorphisms of sum logics." Annales de l'I.H.P. Physique théorique 54.2 (1991): 223-228. <http://eudml.org/doc/76530>.

@article{Pulmannová1991,
author = {Pulmannová, S., Dvurečenskij, A.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {orthomodular -lattice; sum logic; -homomorphism; lattice homomorphism; Hilbert space logics; projective logics; von Neumann algebras},
language = {eng},
number = {2},
pages = {223-228},
publisher = {Gauthier-Villars},
title = {On the homomorphisms of sum logics},
url = {http://eudml.org/doc/76530},
volume = {54},
year = {1991},
}

TY - JOUR
AU - Pulmannová, S.
AU - Dvurečenskij, A.
TI - On the homomorphisms of sum logics
JO - Annales de l'I.H.P. Physique théorique
PY - 1991
PB - Gauthier-Villars
VL - 54
IS - 2
SP - 223
EP - 228
LA - eng
KW - orthomodular -lattice; sum logic; -homomorphism; lattice homomorphism; Hilbert space logics; projective logics; von Neumann algebras
UR - http://eudml.org/doc/76530
ER -

References

top
  1. [1] D. Aerts and I. Daubechies, About the Structure Preserving Maps of a QuantumMechanical Proposition System, Helv. Phys. Acta, Vol. 51, 1978, pp. 637-660. MR542797
  2. [2] D. Aerts and I. Daubechies, Simple Proof that the Structure Preserving Maps Between Quantum Mechanical Propositional Systems Conserve the Angles, Helv. Phys. Acta, Vol. 56, 1983, pp. 1187-1190. MR734581
  3. [3] A. DVUREčENSKIJ, Generalization of Maeda's Theorem, Int. J. Theor. Phys., Vol. 25, 1986, pp. 1117-1124. Zbl0618.46053MR868372
  4. [4] H. Dye, On the Geometry of Projections in Certain Operator Algebras, Ann. Math., Vol. 61, 1955, pp. 73-89. Zbl0064.11002MR66568
  5. [5] S. Gudder, Spectral Methods for a Generalized Probability Theory, Trans. Am. Math. Soc., Vol. 119, 1965, pp. 428-442. Zbl0161.46105MR183657
  6. [6] S. Gudder, Uniqueness and Existence Properties of Bounded Observables, Pac. J. Math., Vol. 19, 1966, pp. 81-93, pp. 588-589. Zbl0149.23603MR201146
  7. [7] J. Hamhalter, Orthogonal Vector Measures, Proc. 2nd Winter School on Measure Theory, Liptovský Ján 1990 (to appear). Zbl0755.46029MR1118406
  8. [8] R. Jajte and A. Paszkiewicz, Vector Measures on the Closed Subspaces of a Hilbert Space, Studia Math., Vol. 63, 1978, pp. 229-251. Zbl0407.46058MR632053
  9. [9] P. Kruszynski, Extensions of Gleason Theorem, Quantum Probability and Applications to Quantum Theory of Irreversible Processes, Proc. Villa Mondragone, 1982, LNM 1055, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984, pp. 210-227. Zbl0573.46038MR782906
  10. [10] P. Kruszynski, Vector Measures on Orthocomplemented Lattices, Math. Proceedings, Vol. A 91, 1988, pp. 427-442. Zbl0819.46036MR976526
  11. [11] T. Matolczi, Tensor Product of Hilbert Lattices and Free Orthodistributive Product of Orthomodular Lattices, Acta Sci. Math., Vol. 37, 1975, pp. 263-272. Zbl0342.06005MR388122
  12. [12] S. Pulmannová and A. DVUREčENSKIJ, Sum Logics, Vector-Valued Measures and Representations, Ann. Inst. Henri Poincaré, Phys. Théor., Vol. 53, 1990, pp. 83-95. Zbl0742.46030MR1077466
  13. [13] V. Varadarajan, Geometry of Quantum Theory, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1985. Zbl0581.46061MR805158
  14. [14] R. Wright, The Structure of Projection-Valued States, a Generalization of Wigner's Theorem, Int. J. Theor. Phys., Vol. 16, 1977, pp. 567-573. Zbl0379.46054MR468859

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.