Treillis d'ondelettes associés aux groupes de Lorentz

G. Bohnke

Annales de l'I.H.P. Physique théorique (1991)

  • Volume: 54, Issue: 3, page 245-259
  • ISSN: 0246-0211

How to cite

top

Bohnke, G.. "Treillis d'ondelettes associés aux groupes de Lorentz." Annales de l'I.H.P. Physique théorique 54.3 (1991): 245-259. <http://eudml.org/doc/76532>.

@article{Bohnke1991,
author = {Bohnke, G.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Lorentz group; frame of wavelets; semi-direct product; dilation action; group action},
language = {fre},
number = {3},
pages = {245-259},
publisher = {Gauthier-Villars},
title = {Treillis d'ondelettes associés aux groupes de Lorentz},
url = {http://eudml.org/doc/76532},
volume = {54},
year = {1991},
}

TY - JOUR
AU - Bohnke, G.
TI - Treillis d'ondelettes associés aux groupes de Lorentz
JO - Annales de l'I.H.P. Physique théorique
PY - 1991
PB - Gauthier-Villars
VL - 54
IS - 3
SP - 245
EP - 259
LA - fre
KW - Lorentz group; frame of wavelets; semi-direct product; dilation action; group action
UR - http://eudml.org/doc/76532
ER -

References

top
  1. [1] S.T. Ali, J.P. Antoine et J.P. Gazeau, Square Integrability of Group Representations on Homogeneous Spaces. I. Reproducing Triples and Frames. II. Generalized Square Integrability and Equivalent Families of Coherent States, U.C.L.-I.P.T. 89 18, preprints, décembre 1989. 
  2. [2] J. Bertrand et P. Bertrand, A Relativistic Wigner Function Affiliated with the Weyl-Poincaré Group, preprint. Zbl0850.22006
  3. [3] I. Daubechies, Orthonormal Bases of Compactly Supported Wavelets, Comm. Pure Appl. Math., vol. XLI, 1988, p. 909-996. Zbl0644.42026MR951745
  4. [4] I. Daubechies, The Wavelet Transform, Time-Frequency Localization and Signal Analysis, preprint. Zbl0738.94004MR1066587
  5. [5] H. Feichtinger et K. Gröchenig, A Unified Approach to Atomic Decompositions Trough Integrable Group Representations, preprint. Zbl0658.22007
  6. [6] A. Grossmann, J. Morlet et T. Paul, Transforms Associated to Square Integrable Group Representations. I. General results, J. Math. Phys., vol. 26, (10), 1985, p. 2473-2479. Zbl0571.22021MR803788
  7. [7] A. Grossmann, J. Morlet et T. Paul, Transforms Associated to Square Integrable Group Representations. II. Examples, Ann. Inst. Henri-Poincaré, vol. 45, n° 3, 1986, p. 293-309. Zbl0601.22001MR868528
  8. [8] P.G. Lemarie et Y. Meyer, Ondelettes et bases hilbertiennes, Revista Matemática Iberoamericana, vol. 2, n° 12, 1986, p. 1-18. Zbl0657.42028MR864650
  9. [9] M.S. Raghunathan, Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik, vol. 68, Springer, 1972. Zbl0254.22005MR507234
  10. [10] P.J. Sally Jr, Analytic Continuation of the Irreducible Unitary Representations of the Universal Covering Group of SL (2, R), Memoirs of the A.M.S., n° 69, 1967. Zbl0157.20702
  11. [11] A. Unterberger et J. Unterberger, La série discrète de SL (2, R) et les opérateurs pseudo-différentiels sur une demi-droite, Ann. Sci. Ec. Norm. Sup., vol. 17, 1984, p. 83-116. Zbl0549.35119MR744069
  12. [12] A. Unterberger et J. Unterberger, A Quantization of the Cartan Domain BDI (q=2) and Operators on the Light Cone, J. Funct. Anal., vol. 72, n° 2, 1987, p. 279-319. Zbl0632.58033MR886815
  13. [13] A. Unterberger, Analyse harmonique et analyse pseudo-différentielle du cône de lumière, Astérisque, n° 156, S.M.F., 1987. Zbl0643.35118MR947371

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.