Square integrability of group representations on homogeneous spaces. I. Reproducing triples and frames

S. T. Ali; J.-P. Antoine; J.-P. Gazeau

Annales de l'I.H.P. Physique théorique (1991)

  • Volume: 55, Issue: 4, page 829-855
  • ISSN: 0246-0211

How to cite

top

Ali, S. T., Antoine, J.-P., and Gazeau, J.-P.. "Square integrability of group representations on homogeneous spaces. I. Reproducing triples and frames." Annales de l'I.H.P. Physique théorique 55.4 (1991): 829-855. <http://eudml.org/doc/76555>.

@article{Ali1991,
author = {Ali, S. T., Antoine, J.-P., Gazeau, J.-P.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {regular positive operator valued measure; locally compact space; reproducing triple; coherent states; reproducing kernel; frame},
language = {eng},
number = {4},
pages = {829-855},
publisher = {Gauthier-Villars},
title = {Square integrability of group representations on homogeneous spaces. I. Reproducing triples and frames},
url = {http://eudml.org/doc/76555},
volume = {55},
year = {1991},
}

TY - JOUR
AU - Ali, S. T.
AU - Antoine, J.-P.
AU - Gazeau, J.-P.
TI - Square integrability of group representations on homogeneous spaces. I. Reproducing triples and frames
JO - Annales de l'I.H.P. Physique théorique
PY - 1991
PB - Gauthier-Villars
VL - 55
IS - 4
SP - 829
EP - 855
LA - eng
KW - regular positive operator valued measure; locally compact space; reproducing triple; coherent states; reproducing kernel; frame
UR - http://eudml.org/doc/76555
ER -

References

top
  1. [1] S.T. Ali and J.-P. Antoine, Ann. Inst. H. Poincaré, Phys. Théor., Vol. 51, 1989, p. 23. Zbl0702.22024MR1029848
  2. [2] S.T. Ali, J.-P. Antoine and J.-P. Gazeau, Ann. Inst. H. Poincaré, Phys. Théor., Vol. 52, 1990, p. 83. Zbl0706.22018MR1046086
  3. [3] A. Perelomov, Generalized Coherent States and their Applications, Springer-Verlag, Berlin, 1986. Zbl0605.22013MR899736
  4. [4] J.R. Klauder and B.S. Skagerstam, Coherent States-Applications in Physics and Mathematical Physics, World Scientific, Singapore, 1985. Zbl1050.81558MR826247
  5. [5] S.T. Ali, Rivista Nuovo Cim, Vol. 8, #11, 1985, pp. 1-128. MR821194
  6. [6] S.T. Ali and E. Prugovecki, Acta Appl. Math., Vol. 6, 1986, p. 1. Zbl0603.22010MR837718
  7. [7] S.T. Ali and E. Prugovecki, Acta Appl. Math., Vol. 6, 1986, p. 19. Zbl0603.22011MR837719
  8. [8] S.T. Ali and E. Prugovecki, Acta Appl. Math., Vol. 6, 1986, p. 47. Zbl0603.22012MR837720
  9. [9] A. Grossmann and J. Morlet, S.I.A.M. J. Math. Anal., Vol. 15, 1984, p. 723. Zbl0578.42007MR747432
  10. [10] R.J. Duffin and A.C. Schaeffer, Trans. Am. Math. Soc., Vol. 72, 1952, p. 341. Zbl0049.32401MR47179
  11. [11] I. Daubechies, A. Grossmann and Y. Meyer, J. Math. Phys., Vol. 27, 1986, p. 1271. Zbl0608.46014MR836025
  12. [12] I. Daubechies, I.E.E.E. Trans. Inform. Theory, Vol. 36, 1990, p. 961. Zbl0738.94004MR1066587
  13. [13] Y. Meyer, Ondelettes et Opérateurs I, II, Hermann, Paris, 1990. Zbl0694.41037MR1085487
  14. [14] J.-M. COMBES, A. GROSSMANN and P. TCHAMITCHIAN Eds., Wavelets: Time-Frequency Methods and Phase Space, Proc. Marseille, 1987, Springer-Verlag, Berlin, 1989. Zbl0718.00009MR1010895
  15. [15] C.E. Heil and D.F. Walnut, S.I.A.M. Review, Vol. 31, 1989, p. 628. Zbl0683.42031MR1025485
  16. [16] S.T. Ali, J.-P. Antoine and J.-P. Gazeau, Square Integrability of Group Representations on Homogeneous Spaces. II. Coherent and Quasi-Coherent states - The Case of the Poincaré Group, Ann. Inst. H. Poincaré, Phys. Theor., Vol. 55, 1991, p. 857- 890. Zbl0752.22003MR1144105
  17. [17] S.K. Berberian, Notes on Spectral Theory, Van Nostrand, Princeton, N.J., 1966. Zbl0138.39104MR190760
  18. [18] M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, Berlin, 1979, Chap. IV, Sec. 8. Zbl0436.46043
  19. [19] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (Algèbres de von Neumann), Gauthier-Villars, Paris, 1957, 1969. Zbl0088.32304
  20. [20] M.A. Naimark, Am. Math. Soc. Trans. Ser. 2, Vol. 5, 1975, p. 35. 
  21. [21] H. Meschkowsky, Hilbertsche Räume mit Kernfunction, Springer-Verlag, Berlin, 1962. Zbl0103.08802
  22. [22] S.T. Ali, J.-P. Antoine and J.-P. Gazeau, Continuous Frames in Hilbert Space (in preparation). Zbl0782.47019
  23. [23] A. Grossmann, J. Morlet and T. Paul, J. Math. Phys., Vol. 26, 1985, p. 2473; Ann. Inst. H. Poincaré, Phys. Théor., Vol. 45, 1986, p. 293. Zbl0571.22021MR868528
  24. [24] M. Holschneider and Ph. Tchamitchian, Invent. Math., Vol. 105, 1991, p. 157. M. Holschneider, Inverse Radon Transforms Through Inverse Wavelet Transforms, Inverse Problems (to appear). Zbl0751.35049MR1109624
  25. [25] S. De Bièvre, J. Math. Phys., Vol. 30, 1989, p. 1401. Zbl0686.46049
  26. [26] S.T. Ali and G.A. Goldin, Quantization, Coherent States and Diffeomorphism Groups, in Differential Geometry, Group Representations and Quantization, p. 147, J. HENNIG, W. LÜCKE and J. TOLAR Eds., Lect. Notes Phys., Vol. 379, Springer-Verlag, Berlin, 1991. MR1180088

Citations in EuDML Documents

top
  1. S. T. Ali, J.-P. Antoine, J.-P. Gazeau, Square integrability of group representations on homogeneous spaces. II. Coherent and quasi-coherent states. The case of the Poincaré group
  2. G. Bohnke, Treillis d'ondelettes associés aux groupes de Lorentz
  3. C. Kalisa, B. Torrésani, N-dimensional affine Weyl-Heisenberg wavelets
  4. Takeshi Kawazoe, Wavelet transform associated to an induced representation of S L ( n + 2 , R )
  5. P. Lévy-Bruhl, J. Nourrigat, États cohérents, théorie spectrale et représentations de groupes nilpotents

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.