Square integrability of group representations on homogeneous spaces. II. Coherent and quasi-coherent states. The case of the Poincaré group

S. T. Ali; J.-P. Antoine; J.-P. Gazeau

Annales de l'I.H.P. Physique théorique (1991)

  • Volume: 55, Issue: 4, page 857-890
  • ISSN: 0246-0211

How to cite

top

Ali, S. T., Antoine, J.-P., and Gazeau, J.-P.. "Square integrability of group representations on homogeneous spaces. II. Coherent and quasi-coherent states. The case of the Poincaré group." Annales de l'I.H.P. Physique théorique 55.4 (1991): 857-890. <http://eudml.org/doc/76556>.

@article{Ali1991,
author = {Ali, S. T., Antoine, J.-P., Gazeau, J.-P.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {reproducing triple; square integrability; homogeneous space; coherent states; Wigner representation; Poincaré group; frame},
language = {eng},
number = {4},
pages = {857-890},
publisher = {Gauthier-Villars},
title = {Square integrability of group representations on homogeneous spaces. II. Coherent and quasi-coherent states. The case of the Poincaré group},
url = {http://eudml.org/doc/76556},
volume = {55},
year = {1991},
}

TY - JOUR
AU - Ali, S. T.
AU - Antoine, J.-P.
AU - Gazeau, J.-P.
TI - Square integrability of group representations on homogeneous spaces. II. Coherent and quasi-coherent states. The case of the Poincaré group
JO - Annales de l'I.H.P. Physique théorique
PY - 1991
PB - Gauthier-Villars
VL - 55
IS - 4
SP - 857
EP - 890
LA - eng
KW - reproducing triple; square integrability; homogeneous space; coherent states; Wigner representation; Poincaré group; frame
UR - http://eudml.org/doc/76556
ER -

References

top
  1. [1] S.T. Ali, J.-P. Antoine and J.-P. Gazeau, Square Integrability of Group Representations on Homogeneous Spaces I. Reproducing Triples and Frames, Ann. Inst. H. Poincaré, Phys. Théor., Vol. 55, 1991, pp. 829-855. Zbl0752.22002MR1144104
  2. [2] A. Perelomov, Generalized Coherent States and their Applications, Springer-Verlag, Berlin, 1986. Zbl0605.22013MR899736
  3. [3] J.R. Klauder and B.S. Skagerstam, Coherent States. Applications in Physics and Mathematical Physics, World Scientific, Singapore, 1985. Zbl1050.81558MR826247
  4. [4] S. Debièvre, J. Math. Phys., Vol. 30, 1989, p. 1401. 
  5. [5] R.J. Duffin and A.C. Schaeffer, Trans. Am. Math. Soc., Vol. 72, 1952, p. 341. Zbl0049.32401MR47179
  6. [6] I. Daubechies, A. Grossmann and Y. Meyer, J: Math. Phys., Vol. 27, 1986, p. 1271. Zbl0608.46014MR836025
  7. [7] S.T. Ali and J.-P. Antoine, Ann. Inst. H. Poincaré, Phys. Théor., Vol. 51, 1989, p. 23. Zbl0702.22024MR1029848
  8. [8] S.T. Ali, J.-P. Antoine and J.-P. Gazeau, Ann. Inst. H. Poincaré, Phys. Théor., Vol. 52, 1990, p. 83. Zbl0706.22018MR1046086
  9. [9] V.S. Varadarajan, Geometry of Quantum Theory. Vol. II. Quantum Theory of Covariant Systems, Van Nostrand Rheinhold, New York, 1970. Zbl0194.28802MR471675
  10. [10] J. Harnad, S. Shnider and L. Vinet, J. Math. Phys., Vol. 21, 1980, p. 2719. Zbl0454.55010MR597586
  11. [11] G.W. Mackey, Proc. Nat. Acad. Sci. (U.S.A.), Vol. 35, 1949, p. 537. Zbl0035.06901MR31489
  12. [12] J. Dixmier, Les C*-algèbres et leurs représentations, 2e éd., Gauthier-Villars, Paris, 1969. Zbl0174.18601MR246136
  13. [13] A. Grossmann, J. Morlet and T. Paul, J. Math. Phys., Vol. 26, 1985, p. 2473. Zbl0571.22021MR803788
  14. [14] S.T. Ali and N. Giovannini, Helv. Phys. Acta, Vol. 56, 1983, p. 1140. 
  15. [15] N. Giovannini, J. Math. Phys., Vol. 22, 1981, p. 2389. MR640643
  16. [16] N. Giovannini, Lett. Math. Phys., Vol. 5, 1981, p. 161. Zbl0466.22019MR624757
  17. [17] S.T. Ali and E. Prugovecki, Acta Appl. Math., Vol. 6, 1986, p. 19. Zbl0603.22011MR837719
  18. [18] S.T. Ali and E. Prugovecki, Acta Appl. Math., Vol. 6, 1986, p. 47. Zbl0603.22012
  19. [19] B. Torrésani, J. Math. Phys., Vol. 32, 1991, p. 1273; Time-Frequency Representations: Wavelet Packets and Optimal Decomposition, Ann. Inst. H. Poincaré, Phys. Théor. (to appear). Zbl0748.46046
  20. [20] E. Prugovecki, J. Math. Phys., Vol. 19, 1978, p. 2260. 
  21. [21] G. Kaiser, J. Math. Phys., Vol. 18, 1977, p. 952; Vol. 19, 1978, p. 502. 
  22. [22] S.T. Ali and E. Prugovecki, J. Math. Phys., Vol. 18, 1977, p. 219. Zbl0364.46055MR489547
  23. [23] A. Unterberger, Analyse harmonique et analyse pseudo-différentielle du cône de lumière, Astérisque, Vol. 156, Soc. Math. de France, Paris, 1987. Zbl0643.35118MR947371
  24. [24] A. Unterberger, C. R. Acad. Sci. Paris, T. 305, Series I, 1987, p. 415; T. 306, Series I, 1988, p. 111; T. 308, Series I, 1989, p. 397; Quantification relativiste, Mém. Soc. Math. France, n° 44/45, 1990. MR916342
  25. [25] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic, New York, 1978. Zbl0451.53038MR514561
  26. [26] G. Mack, Commun. Math. Phys., Vol. 55, 1977, p. 1. Zbl0352.22012
  27. [27] H. Rossi and M. Vergne, Acta Math., Vol. 136, 1976, p. 1. Zbl0356.32020MR480883
  28. [28] M. Flensted-Jensen, Ann. Math., Vol. 111, 1980, p. 253. Zbl0462.22006MR569073
  29. [29] G. Olafsson and B. Ørsted, J. Funct. Anal., Vol. 81, 1988, p. 126. Zbl0678.22008MR967894
  30. [30] S. Debièvre, private communication. 
  31. [31] G. Bohnké, Ann. Inst. H. Poincaré, Phys. Théor., Vol. 54, 1991, p. 245. Zbl0743.43005MR1122655
  32. [32] J.R. Klauder and R.F. Streater, J. Math. Phys., Vol. 32, 1991, p. 1609. Zbl0732.22020MR1109217
  33. [33] S.T. Ali, J.-P. Antoine and J.-P. Gazeau, Relativistic quantum frames (in preparation). Zbl0782.47020
  34. [34] S.T. Ali, J.A. Brooke and J.-P. Gazeau, Squeezed coherent states (in preparation). 
  35. [35] S.T. Ali and G.A. Goldin, Quantization, Coherent States and Diffeomorphism Groups, in Differential Geometry, Group Representations and Quantization, J. HENNIG, W. LÜCKE and J. TOLAR Eds., Lect. Notes Phys. , Vol. 379, Springer-Verlag, Berlin, 1991, p. 147. MR1180088
  36. [36] J.-P. Antoine and U. Moschella, Poincaré coherent states: the two-dimensional massless case, Preprint UCL-IPT-91-12. Zbl0792.22009MR1210922
  37. [37] E. Prugovecki, Phys. Rev., Vol. D 18, 1978, p. 3655. MR515260
  38. [38] S.T. Ali and G.G. Emch, J. Math. Phys., Vol. 27, 1986, p. 2936. Zbl0615.58009MR866592
  39. [39] S.T. Ali and H.-D. Doebner, in The Physics of Phase Space, Proc. Maryland, 1986, p. 330; Y. S. KIM and W. W. ZACHARY Eds., Lect. Notes Phys., Vol. 278, Springer, Berlin, 1987. MR915802
  40. [40] S.T. Ali and H.-D. Doebner, Phys. Rev., Vol. A 41, 1990, p. 1199. MR1048860
  41. [41] J. Bertrand and P. Bertrand, in Group Theoretical Methods in Physics (Proc. Ste Adèle, 1988, p. 380; Y. SAINT-AUBAIN and L. VINET Eds., World Scientific, Singapore, 1989. MR1134785

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.