Variational calculus in several variables : a hamiltonian approach

A. Echeverría Enríquez; M. C. Muñoz Lecanda

Annales de l'I.H.P. Physique théorique (1992)

  • Volume: 56, Issue: 1, page 27-47
  • ISSN: 0246-0211

How to cite

top

Echeverría Enríquez, A., and Muñoz Lecanda, M. C.. "Variational calculus in several variables : a hamiltonian approach." Annales de l'I.H.P. Physique théorique 56.1 (1992): 27-47. <http://eudml.org/doc/76559>.

@article{EcheverríaEnríquez1992,
author = {Echeverría Enríquez, A., Muñoz Lecanda, M. C.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Hamiltonian formulation; variational calculus; classical field theory; Lagrangian formulation},
language = {eng},
number = {1},
pages = {27-47},
publisher = {Gauthier-Villars},
title = {Variational calculus in several variables : a hamiltonian approach},
url = {http://eudml.org/doc/76559},
volume = {56},
year = {1992},
}

TY - JOUR
AU - Echeverría Enríquez, A.
AU - Muñoz Lecanda, M. C.
TI - Variational calculus in several variables : a hamiltonian approach
JO - Annales de l'I.H.P. Physique théorique
PY - 1992
PB - Gauthier-Villars
VL - 56
IS - 1
SP - 27
EP - 47
LA - eng
KW - Hamiltonian formulation; variational calculus; classical field theory; Lagrangian formulation
UR - http://eudml.org/doc/76559
ER -

References

top
  1. [1] R. Abraham and J. Marsden, Foundations of Mechnics, Benjamin Cummings, 1978. Zbl0393.70001MR515141
  2. [2] C. Batlle, J. Gomis, J.M. Pons and N. Román, On the Legendre Transformation for Singular Lagrangians and Related Topics, J. Phys. A, Vol. 20, 1987, pp. 5113- 5123. Zbl0642.58029MR914696
  3. [3] J. Cariñena, C. Lopez and N. Román, Geometric Study of the Connection Between Lagrangian and Hamiltonian Constraints, J. Geom. Phys., Vol. 4, No. 3, 1987, pp. 315-334. Zbl0657.58012MR957017
  4. [4] J. Cariñena, M. Crampin and L.A. Ibort, On the multisymplectic Formalism for First Order Field Theories, preprint. Zbl0782.58057MR1244450
  5. [5] P.L. García, The Poincaré-Cartan Invariant in the Calculus of Variations, Symposia Mathematica, Vol. 14, 1973, pp. 219-240. Zbl0303.53040MR406246
  6. [6] H. Goldschmidt and S. Sternberg, The Hamilton-Cartan Formalism in the Calculus of Variations, Ann. Inst. Fourier Grenoble, Vol. 23, No. 1, 1973, pp. 203-267. Zbl0243.49011MR341531
  7. [7] H. Goldschmidt, Integrability Criteria for Systems of Nonlinear Partial Differential Equations, J. Diff. Geom.1, 1967, pp. 269-307. Zbl0159.14101MR226156
  8. [8] M. Gotay, J. Isemberg, J. Marsden, R. Montgomery, J. Sniatycki and P. Yasskin, Momentum Map and the Hamiltonian Treatment of Classical Field Theories with Constraints, preprint. 
  9. [9] M. Gotay, A Multisymplectic Framework for Classical Field Theory and the Calculus of Variations, preprint. Zbl0741.70012
  10. [10] M. De Léon and P. Rodrigues, Generalized Classical Mechanics and Field Theory, North Holland, 1985. Zbl0581.58015MR808964
  11. [11] R. Ouzilou, Expression symplectique des problèmes variationels, Symp. Math., Vol. 14, 1973, pp. 85-98. Zbl0307.58002MR385923
  12. [12] D.J. Saunders, The Geometry of Jet Bundles, London Math. Soc. Lect. Notes Ser., No. 142, Cambridge Univ. Press, 1989. Zbl0665.58002MR989588
  13. [13] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. I, Publish or Perish, Berkeley, 1979. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.