Page 1 Next

Displaying 1 – 20 of 56

Showing per page

A new geometric setting for classical field theories

M. de León, J. C. Marrero, D. Martín de Diego (2003)

Banach Center Publications

A new geometrical setting for classical field theories is introduced. This description is strongly inspired by the one due to Skinner and Rusk for singular lagrangian systems. For a singular field theory a constraint algorithm is developed that gives a final constraint submanifold where a well-defined dynamics exists. The main advantage of this algorithm is that the second order condition is automatically included.

A new Lagrangian dynamic reduction in field theory

François Gay-Balmaz, Tudor S. Ratiu (2010)

Annales de l’institut Fourier

For symmetric classical field theories on principal bundles there are two methods of symmetry reduction: covariant and dynamic. Assume that the classical field theory is given by a symmetric covariant Lagrangian density defined on the first jet bundle of a principal bundle. It is shown that covariant and dynamic reduction lead to equivalent equations of motion. This is achieved by constructing a new Lagrangian defined on an infinite dimensional space which turns out to be gauge group invariant.

About boundary terms in higher order theories

Lorenzo Fatibene, Mauro Francaviglia, S. Mercadante (2011)

Communications in Mathematics

It is shown that when in a higher order variational principle one fixes fields at the boundary leaving the field derivatives unconstrained, then the variational principle (in particular the solution space) is not invariant with respect to the addition of boundary terms to the action, as it happens instead when the correct procedure is applied. Examples are considered to show how leaving derivatives of fields unconstrained affects the physical interpretation of the model. This is justified in particular...

Chaos in D0 brane dynamics

I. Aref'eva, P. Medvedev, O. Rytchkov, I. Volovich (1998)

Banach Center Publications

We consider the classical and quantum dynamics of D0 branes within the Yang-Mills approximation. Using a simple ansatz we show that a classical trajectory exhibits a chaotic motion. Chaotic dynamics in N=2 supersymmetric Yang-Mills theory is also discussed.

Controllability of 3D low Reynolds number swimmers

Jérôme Lohéac, Alexandre Munnier (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this article, we consider a swimmer (i.e. a self-deformable body) immersed in a fluid, the flow of which is governed by the stationary Stokes equations. This model is relevant for studying the locomotion of microorganisms or micro robots for which the inertia effects can be neglected. Our first main contribution is to prove that any such microswimmer has the ability to track, by performing a sequence of shape changes, any given trajectory in the fluid. We show that, in addition, this can be done...

Distinguished Riemann-Hamilton geometry in the polymomentum electrodynamics

Alexandru Oană, Mircea Neagu (2012)

Communications in Mathematics

In this paper we develop the distinguished (d-) Riemannian differential geometry (in the sense of d-connections, d-torsions, d-curvatures and some geometrical Maxwell-like and Einstein-like equations) for the polymomentum Hamiltonian which governs the multi-time electrodynamics.

Erratum

(2013)

Communications in Mathematics

Currently displaying 1 – 20 of 56

Page 1 Next