Entropy estimates for finitely correlated states

M. Fannes; B. Nachtergaele; R. F. Werner

Annales de l'I.H.P. Physique théorique (1992)

  • Volume: 57, Issue: 3, page 259-277
  • ISSN: 0246-0211

How to cite

top

Fannes, M., Nachtergaele, B., and Werner, R. F.. "Entropy estimates for finitely correlated states." Annales de l'I.H.P. Physique théorique 57.3 (1992): 259-277. <http://eudml.org/doc/76587>.

@article{Fannes1992,
author = {Fannes, M., Nachtergaele, B., Werner, R. F.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Rényi entropy densities of integer order; finitely correlated states on a quantum spin chain; SU(2)-invariant interaction; ground state degeneracy; non-zero spectral gap above the ground state},
language = {eng},
number = {3},
pages = {259-277},
publisher = {Gauthier-Villars},
title = {Entropy estimates for finitely correlated states},
url = {http://eudml.org/doc/76587},
volume = {57},
year = {1992},
}

TY - JOUR
AU - Fannes, M.
AU - Nachtergaele, B.
AU - Werner, R. F.
TI - Entropy estimates for finitely correlated states
JO - Annales de l'I.H.P. Physique théorique
PY - 1992
PB - Gauthier-Villars
VL - 57
IS - 3
SP - 259
EP - 277
LA - eng
KW - Rényi entropy densities of integer order; finitely correlated states on a quantum spin chain; SU(2)-invariant interaction; ground state degeneracy; non-zero spectral gap above the ground state
UR - http://eudml.org/doc/76587
ER -

References

top
  1. [1] L. Accardi and A. Frigerio, Markovian Cocycles, Proc. R. Ir. Acad., Vol. 83A, (2), 1983, pp.251-263. Zbl0534.46045MR736500
  2. [2] M. Aizenman and E.H. Lieb, The third law of thermodynamics and the degeneracy of the ground state for lattice systems, J. Stat. Phys., Vol. 24, 1981, pp. 279-297. MR601698
  3. [3] I. Affleck and E.H. Lieb, A proof of part of Haldane's conjecture on quantum spin chains, Lett. Math. Phys., Vol. 12, 1986, pp. 57-69. MR849254
  4. [4] I. Affleck, T. Kennedy, E.H. Lieb and H. Tasaki, Valence bond ground states in isotropic quantum antiferromagnets, Commun. Math. Phys., Vol. 115, 1988, pp. 477-528. MR931672
  5. [5] O. Bratteli and D.W. Robinson, Operator algebras and quantum statistical mechanics, 2 volumes, Springer Verlag, Berlin, Heidelberg. New York1979 and 1981. Zbl0421.46048MR1441540
  6. [6] M. Fannes, B. Nachtergaele and R.F. Werner, Finitely correlated states of quantum spin chains, Commun. Math. Phys., Vol. 144, 1992, pp. 443-490. Zbl0755.46039MR1158756
  7. [7] M. Fannes, B. Nachtergaele and R.F. Werner, Valence bond states on quantum spin chains as ground states with spectral gap, J. Phys. A, Vol. 24, 1991, pp. L185- L190. MR1104168
  8. [8] P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors, Physica, Vol. 9D, 1983, pp.189-205. Zbl0593.58024MR732572
  9. [9] P. Grassberger and I. Procaccia, Dimensions and entropies of strange attractors from a fluctuating dynamics point of view, Physica, Vol. 13D, 1984, pp. 34-54. Zbl0587.58031MR775277
  10. [10] F.D.M. Haldane, Continuum dynamics of the 1-D Heisenberg antiferromagnet: identification with the O (3) nonlinear sigma model, Phys. Lett., Vol. 93A, 1983, pp. 464-468. MR697677
  11. [11] T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia and B.I. Shraiman, Fractal measures and their singularities: the characterization of strange sets, Phys. Rev., Vol. 33A, 1986, pp. 1141-1151. Zbl1184.37028MR823474
  12. [12] H.G.E. Hentschel and I. Procaccia, The infinite number of generalized dimensions of fractals and strange attractors, Physica, Vol. 8D, 1983, pp.435-444. Zbl0538.58026MR719636
  13. [13] L. Van Hove, Quelques propriétés générales de l'intégrale de configuration d'un système de particules avec interaction, Physica, Vol. 15, 1949, pp. 951-961. Zbl0036.40602
  14. [14] M.G. Kreĭn and M.A. Rutman, Linear operators leaving invariant a cone in a Banach space, Transl. Am. Math. Soc. Series1, Vol. 10, 1966, pp. 199-325. Zbl0030.12902
  15. [15] B. Nachtergaele and L. Slegers, The ground state and its entropy for a class of one dimensional classical lattice systems, Physica, Vol. 149A, 1988, pp. 432-446. MR944036
  16. [16] S. Redner, One-dimensional Ising chain with competing interactions: exact results and connection with other statistical models, J. Stat. Phys., Vol. 25, 1981, pp. 15-23. MR610689
  17. [17] A. Rényi, On measures of entropy and information, Proc. 4th Berkeley Symp. Math. Statist. Prob., 1960, University of California PressBerkeley, 1961. Zbl0106.33001MR132570
  18. [18] H.H. Schaefer, Topological vector spaces, Springer-Verlag, New York, Heidelberg, Berlin, 1971. Zbl0217.16002MR342978
  19. [19] L. Slegers, The residual entropy for a class of one-dimensional lattice models, J. Phys., Vol. 21A, 1988, pp. 3489-3500. MR960417
  20. [20] W.F. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc., Vol. 6, 1955, pp.211-216. Zbl0064.36703MR69403
  21. [21] E. Størmer, Positive maps of C*-algebras, in A. HARTKÄMPER, and H. NEUMANN Eds., Foundations of quantum mechanics and ordered linear spaces, Lecture Notes in Physics 29, Springer Verlag, Berlin, Heidelberg, New York, 1974. 
  22. [22] G. Toulouse, Theory of the frustration effect in spin glasses: I, Commun. Phys., Vol. 2, 1977, pp. 115-119. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.