Efficient bounds for the spectral shift function
Annales de l'I.H.P. Physique théorique (1993)
- Volume: 58, Issue: 1, page 55-83
- ISSN: 0246-0211
Access Full Article
topHow to cite
topSobolev, A. V.. "Efficient bounds for the spectral shift function." Annales de l'I.H.P. Physique théorique 58.1 (1993): 55-83. <http://eudml.org/doc/76598>.
@article{Sobolev1993,
author = {Sobolev, A. V.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {trace operator; inequality for the spectral shift function; Schrödinger operator},
language = {eng},
number = {1},
pages = {55-83},
publisher = {Gauthier-Villars},
title = {Efficient bounds for the spectral shift function},
url = {http://eudml.org/doc/76598},
volume = {58},
year = {1993},
}
TY - JOUR
AU - Sobolev, A. V.
TI - Efficient bounds for the spectral shift function
JO - Annales de l'I.H.P. Physique théorique
PY - 1993
PB - Gauthier-Villars
VL - 58
IS - 1
SP - 55
EP - 83
LA - eng
KW - trace operator; inequality for the spectral shift function; Schrödinger operator
UR - http://eudml.org/doc/76598
ER -
References
top- [1] M.G. Krein, Perturbation Determinants and a Formula for the Traces of Unitary and Self-Adjoint Operators, Soviet Math. Doklady, Vol. 3, 1962, p. 707-710. Zbl0191.15201
- [2] M. Sh. BIRMAN and M.G. Krein, On the Theory of Wave Operators and Scattering Operators, Soviet Math. Doklady, Vol. 3, 1962, pp. 740-744. Zbl0196.45004MR139007
- [3] M.G. Krein, Topics in Differential and Integral Equations and Operator Theory, Operator Theory: Advances and Applications, Vol. 7, 1983. Zbl0512.45001MR815109
- [4] D.R. Yafaev, Mathematical Scattering Theory, I, General Theory, Amer. Math. Soc. (in print). Zbl0761.47001MR1180965
- [5] E. Mourre, Absence of Singular Spectrum for Certain Self-Adjoint Operators, Comm. Math. Phys., Vol. 78, 1981, pp. 391-408. Zbl0489.47010MR603501
- [6] I.Z. Gohberg and M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, A.M.S., Transl. Math. Monographs, Vol. 18, 1969. Zbl0181.13504MR246142
- [7] M. Sh. BIRMAN and M.Z. Solomyak, Spectral Theory of Selfadjoint Operators in Hilbert Space, Dordrecht, D. Reidel, P.C., 1987. Zbl0744.47017MR1192782
- [8] M. Sh. BIRMAN and M.Z. Solomyak, Estimates of Singular Numbers of Integral Operators, Russian Math. Surveys, Vol. 32:1, 1977, pp. 15-89. Zbl0376.47023MR438186
- [9] T. Kato, Perturbation Theory for Linear Operators, Springer, 1966. Zbl0148.12601
- [10] M. Sh. BIRMAN and S. Entina, Time Independent Approach in the Abstract Scattering Theory, Izv. Acad. Nauk S.S.S.R., T 31, No. 2, 1967, pp. 401-430 (Russian). MR209895
- [11] S.N. Naboko, Non-Tangent Boundary Values of Operator R-functions in the Half–Plane, Algebra i Analiz, Vol. 157, 1989, pp. 197-222; Engl. transl.: Leningrad Math. J., Vol. 1, No. 5, 1990. Zbl0716.47009MR1036844
- [12] M. Klaus, Some Applications of the Birman-Schwinger Principle, Helv. Phys. Acta, Vol. 55, 1982, pp. 49-68. MR674865
- [13] M. Reed and B. Simon, Methods of Modern Mathematical Physics, III. Scattering Theory, Academic Press, London, 1979. Zbl0405.47007MR529429
- [14] V.S. Bouslaev, Trace Formulae and Some Asymptotic Estimates of the Resolvent Kernel for the Three-Dimensional Schrödinger Operator, Topics in Math. Phys., Vol. 1, 1966, pp. 82-101.
- [15] Y. Colin De Verdière, Une formule de trace pour l'opérateur de Schrôdinger dans R3, Ann. Scient. Ec. Norm. Sup., Serie 4, t. 14, 1981, pp. 27-39. Zbl0482.35068MR618729
- [16] L. Guillopé, Asymptotique de la phase de diffusion pour l'opérateur de Schrôdinger dans Rn, Seminaire E.D.P., École Polytechnique, exposé No. 5, 1984-1985. Zbl0597.35091MR819771
- [17] D. Robert, Asymptotique de la phase de diffusion à haute énergie pour les perturbations du laplacien, Séminaire E.D.P., École Polytechnique, exposé No. 17, 1988-1989. Zbl0706.35107MR1032293
- [18] D. Robert and H. Tamura, Semi-Classical Bounds for Resolvents of Schrödinger Operators and Asymptotics for Scattering Phases, Comm. in Part. Diff. Eq., Vol. 9, (10), 1984, pp. 1017-1058. Zbl0561.35021MR755930
- [19] M. Cwickel, Weak Type Estimates for Singular Values and the Number of Bound States of Schrôdinger Operators, Ann. Math., Vol. 106, 1977, pp. 93-100. Zbl0362.47006MR473576
- [20] M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV. Analysis of Operators, Academic Press, London, 1978. Zbl0401.47001MR493421
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.