Efficient bounds for the spectral shift function

A. V. Sobolev

Annales de l'I.H.P. Physique théorique (1993)

  • Volume: 58, Issue: 1, page 55-83
  • ISSN: 0246-0211

How to cite

top

Sobolev, A. V.. "Efficient bounds for the spectral shift function." Annales de l'I.H.P. Physique théorique 58.1 (1993): 55-83. <http://eudml.org/doc/76598>.

@article{Sobolev1993,
author = {Sobolev, A. V.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {trace operator; inequality for the spectral shift function; Schrödinger operator},
language = {eng},
number = {1},
pages = {55-83},
publisher = {Gauthier-Villars},
title = {Efficient bounds for the spectral shift function},
url = {http://eudml.org/doc/76598},
volume = {58},
year = {1993},
}

TY - JOUR
AU - Sobolev, A. V.
TI - Efficient bounds for the spectral shift function
JO - Annales de l'I.H.P. Physique théorique
PY - 1993
PB - Gauthier-Villars
VL - 58
IS - 1
SP - 55
EP - 83
LA - eng
KW - trace operator; inequality for the spectral shift function; Schrödinger operator
UR - http://eudml.org/doc/76598
ER -

References

top
  1. [1] M.G. Krein, Perturbation Determinants and a Formula for the Traces of Unitary and Self-Adjoint Operators, Soviet Math. Doklady, Vol. 3, 1962, p. 707-710. Zbl0191.15201
  2. [2] M. Sh. BIRMAN and M.G. Krein, On the Theory of Wave Operators and Scattering Operators, Soviet Math. Doklady, Vol. 3, 1962, pp. 740-744. Zbl0196.45004MR139007
  3. [3] M.G. Krein, Topics in Differential and Integral Equations and Operator Theory, Operator Theory: Advances and Applications, Vol. 7, 1983. Zbl0512.45001MR815109
  4. [4] D.R. Yafaev, Mathematical Scattering Theory, I, General Theory, Amer. Math. Soc. (in print). Zbl0761.47001MR1180965
  5. [5] E. Mourre, Absence of Singular Spectrum for Certain Self-Adjoint Operators, Comm. Math. Phys., Vol. 78, 1981, pp. 391-408. Zbl0489.47010MR603501
  6. [6] I.Z. Gohberg and M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, A.M.S., Transl. Math. Monographs, Vol. 18, 1969. Zbl0181.13504MR246142
  7. [7] M. Sh. BIRMAN and M.Z. Solomyak, Spectral Theory of Selfadjoint Operators in Hilbert Space, Dordrecht, D. Reidel, P.C., 1987. Zbl0744.47017MR1192782
  8. [8] M. Sh. BIRMAN and M.Z. Solomyak, Estimates of Singular Numbers of Integral Operators, Russian Math. Surveys, Vol. 32:1, 1977, pp. 15-89. Zbl0376.47023MR438186
  9. [9] T. Kato, Perturbation Theory for Linear Operators, Springer, 1966. Zbl0148.12601
  10. [10] M. Sh. BIRMAN and S. Entina, Time Independent Approach in the Abstract Scattering Theory, Izv. Acad. Nauk S.S.S.R., T 31, No. 2, 1967, pp. 401-430 (Russian). MR209895
  11. [11] S.N. Naboko, Non-Tangent Boundary Values of Operator R-functions in the Half–Plane, Algebra i Analiz, Vol. 157, 1989, pp. 197-222; Engl. transl.: Leningrad Math. J., Vol. 1, No. 5, 1990. Zbl0716.47009MR1036844
  12. [12] M. Klaus, Some Applications of the Birman-Schwinger Principle, Helv. Phys. Acta, Vol. 55, 1982, pp. 49-68. MR674865
  13. [13] M. Reed and B. Simon, Methods of Modern Mathematical Physics, III. Scattering Theory, Academic Press, London, 1979. Zbl0405.47007MR529429
  14. [14] V.S. Bouslaev, Trace Formulae and Some Asymptotic Estimates of the Resolvent Kernel for the Three-Dimensional Schrödinger Operator, Topics in Math. Phys., Vol. 1, 1966, pp. 82-101. 
  15. [15] Y. Colin De Verdière, Une formule de trace pour l'opérateur de Schrôdinger dans R3, Ann. Scient. Ec. Norm. Sup., Serie 4, t. 14, 1981, pp. 27-39. Zbl0482.35068MR618729
  16. [16] L. Guillopé, Asymptotique de la phase de diffusion pour l'opérateur de Schrôdinger dans Rn, Seminaire E.D.P., École Polytechnique, exposé No. 5, 1984-1985. Zbl0597.35091MR819771
  17. [17] D. Robert, Asymptotique de la phase de diffusion à haute énergie pour les perturbations du laplacien, Séminaire E.D.P., École Polytechnique, exposé No. 17, 1988-1989. Zbl0706.35107MR1032293
  18. [18] D. Robert and H. Tamura, Semi-Classical Bounds for Resolvents of Schrödinger Operators and Asymptotics for Scattering Phases, Comm. in Part. Diff. Eq., Vol. 9, (10), 1984, pp. 1017-1058. Zbl0561.35021MR755930
  19. [19] M. Cwickel, Weak Type Estimates for Singular Values and the Number of Bound States of Schrôdinger Operators, Ann. Math., Vol. 106, 1977, pp. 93-100. Zbl0362.47006MR473576
  20. [20] M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV. Analysis of Operators, Academic Press, London, 1978. Zbl0401.47001MR493421

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.