Asymptotique de la phase de diffusion à haute énergie pour des perturbations du laplacien

D. Robert

Séminaire Équations aux dérivées partielles (Polytechnique) (1988-1989)

  • page 1-14

How to cite

top

Robert, D.. "Asymptotique de la phase de diffusion à haute énergie pour des perturbations du laplacien." Séminaire Équations aux dérivées partielles (Polytechnique) (1988-1989): 1-14. <http://eudml.org/doc/111965>.

@article{Robert1988-1989,
author = {Robert, D.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {scattering phase; asymptotic expansions},
language = {fre},
pages = {1-14},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Asymptotique de la phase de diffusion à haute énergie pour des perturbations du laplacien},
url = {http://eudml.org/doc/111965},
year = {1988-1989},
}

TY - JOUR
AU - Robert, D.
TI - Asymptotique de la phase de diffusion à haute énergie pour des perturbations du laplacien
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1988-1989
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 14
LA - fre
KW - scattering phase; asymptotic expansions
UR - http://eudml.org/doc/111965
ER -

References

top
  1. [Ba-Gu-Ra] C. Bardos, J.C. Guillot, J. Ralston, La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Comm. in PDE7 (1982) 905-958. Zbl0496.35067MR668585
  2. [Bi-Kr] M.S. Birman, M.G. Krein, Dok Akad. Nauk SSSR (1962) 475-478. Zbl0196.45004
  3. [Bu] V.S. Buslaev, Soviet Mat Dokl12 (1971) 591-595. Zbl0224.47023
  4. [CdV] Y. Colin de Verdière, Une formule de trace pour l'opérateur de Schrödinger dans R3. Ann. Scient. Ec. Norm. Sup.4 t 14 (1981) 27-39. Zbl0482.35068MR618729
  5. [Co-Kr-Sc] P. Cotta, Ramusino, W. Krüger, R. Schrader, Quantum scattering by External Metrics and Yang-Mills Potentials, Ann. Inst. Poincaré, Section Physique Théorique Vol. XXXI n°1 (1979) 43-71. Zbl0441.35055MR557051
  6. [Da-Ro] M. Dauge, D. Robert, Weyl's formula for a class of pseudodifferential operators with negative order on L2 (Rn )Lecture Note Springer n° 1256 (1986). Zbl0629.35098
  7. [Ge-Ma] C. Gérard, A. Martinez, Principe d'absorption limite pour des opérateurs de Schrödinger à longue portée. C.R.A.S.Paris Ser.I, 306 (1988) 121-123. Zbl0672.35013MR929103
  8. [Gi] P.B. Gilkey, Invariance theory, the heat equation and the Atiyah-Singer index theorem. Wilmington: Publish or Perish1984. Zbl0565.58035MR783634
  9. [Gu] L. Guillopé, 1) Thèse de 3ème cycle, Grenoble1981, 2) Asymptotique de la phase de diffusion pour l'opérateur de Schrödinger dans Rn, Séminaire E.D.P. de l'Ecole Polytechnique Exposé n°5. (1984-85). 
  10. [He-Ro] B. Helffer, D. Robert, Calcul fonctionnel pour une classe d'opérateurs admissibles. J. of Funct. Anal. vol 53 n°3 (1983) 246-268. Zbl0524.35103MR724029
  11. [Ho] L. Hörmander, The spectral function of an elliptic operator. Acta. Math.121 (1968) 193-218. Zbl0164.13201MR609014
  12. [Is-Ki] H. Isozaki, H. Kitada, Modified wave operators with time indépendant modifiersJ. Fac Sc. Univ. Tokyo Sect. IA.32 (1985) 77-104. Zbl0582.35036MR783182
  13. [Iv-Sh] V.Y. Ivrii, M.A. Shubin, On the asymptotic behavior for the spectral shift function. Dokl. Akad. Nauk SSSR263 n° 2 (1982) 332-334. Zbl0541.58047MR650152
  14. [Je-Ka] A. Jensen, T. Kato, Asymptotic behavior of the scattering phase for exterior domains. Comm. in P.D.E.3 (1978) 1165-1195. Zbl0419.35067MR512084
  15. [Je] A. Jensen, 1) A stationary proof of Lavine's formula for time delay. Letters in Math Physics7 (1983) 137-143. 2) High energy resolvent estimates for generalized many body Schrödinger operators. Pub. RIMS Kyoto1989. Zbl0517.47010MR708436
  16. [Je-Mo-Pe] A. Jensen, E. Mourre, P. Perry, Multiple commutator estimates and resolvent smoothness in quantum scattering theory. Ann. I.H.P.41A (1984) 207-225. Zbl0561.47007MR769156
  17. [Ki] H. Kitada, Fundamental solutions and eigenfunction expansions for Schrödinger operators I. Math Z198181-190 (1988). Zbl0627.35073MR939534
  18. [Ku] S.T. Kuroda, An introduction to scattering theory, Lecture Notes 51, Mat. Inst. Aahus Univ.1978. Zbl0407.47003MR528757
  19. [Le-Pa] J.M. Lee, T.H. Parker, The Yamabe problemBull. A.M.S. (1987), 37. Zbl0633.53062MR888880
  20. [Ma-Ra] A. Majda, J. Ralston, An analogue of Weyl's theorem for unbounded domains. Duke Math. J.I45 (1978) 183-196; II 45 (1978) 513-536; III 46 (1979) 725-731. Zbl0416.35058
  21. [Pe-Po] V. Petkov, G. Popov, Asymptotic behaviour of the scattering phase for non trapping obstacles. Ann. Inst. Fourier Grenoble32 (1982) 111-149. Zbl0476.35014MR688023
  22. [Po] G. Popov, Asymptotic behaviour of the scattering phase for the Schrôdinger operator. Publ. Acad. des Sciences de Sofia (1982). Zbl0513.35061MR681745
  23. [Po-Sc] G. Popov, M.A. Schubin, Asymptotic expansion of the spectral fonction for second order elliptic operators in Rn. Funct. Anal. Appl.17 (1983) 37-45. Zbl0533.35072MR714219
  24. [Ra] J.V. Ralston, Trapped rays in spherically symmetric media and poles of the scattering Matrix. CPAM vol.XXIV (1971) 571-582. Zbl0206.39603MR457962
  25. [Re-Si] M. Reed, B. Simon, Scattering theoryAcademic Press (1979). Zbl0405.47007MR529429
  26. [Ro-Ta] D. Robert, H. Tamura, Semi classical asymptotics for local spectral densities and time delay problems in scattering process. J. of Funct. Anal. vol. 80 n°1 (1988) 124-147. Zbl0663.47009MR960227
  27. [Sc] R. Schrader, High energy behaviour for non relativistic scattering by stationary external metrics and Yang-Mills potentials. Z. Physik C. Particles and Fields4, 1980, 27-36. MR561857
  28. [Se] R. Seeley, Complex powers of elliptic operators Proc. Sympos. Pure Math. AMS10 (1967), 288-307. Zbl0159.15504MR237943

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.