A Nekhoroshev-type theorem for the Pauli-Fierz model of classical electrodynamics

Dario Bambusi

Annales de l'I.H.P. Physique théorique (1994)

  • Volume: 60, Issue: 3, page 339-371
  • ISSN: 0246-0211

How to cite

top

Bambusi, Dario. "A Nekhoroshev-type theorem for the Pauli-Fierz model of classical electrodynamics." Annales de l'I.H.P. Physique théorique 60.3 (1994): 339-371. <http://eudml.org/doc/76639>.

@article{Bambusi1994,
author = {Bambusi, Dario},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Pauli-Fierz model; Nekhoroshev-type theorem; Abraham-Lorentz-Dirac equation},
language = {eng},
number = {3},
pages = {339-371},
publisher = {Gauthier-Villars},
title = {A Nekhoroshev-type theorem for the Pauli-Fierz model of classical electrodynamics},
url = {http://eudml.org/doc/76639},
volume = {60},
year = {1994},
}

TY - JOUR
AU - Bambusi, Dario
TI - A Nekhoroshev-type theorem for the Pauli-Fierz model of classical electrodynamics
JO - Annales de l'I.H.P. Physique théorique
PY - 1994
PB - Gauthier-Villars
VL - 60
IS - 3
SP - 339
EP - 371
LA - eng
KW - Pauli-Fierz model; Nekhoroshev-type theorem; Abraham-Lorentz-Dirac equation
UR - http://eudml.org/doc/76639
ER -

References

top
  1. [1] D. Bambusi and L. Galgani, Some Rigorous Results on the Pauli-Fierz Model of Classical Electrodynamics, Ann. Inst. H. Poincaré, Physique théorique, Vol. 58, 1993, pp. 155-171. Zbl0769.35057MR1217117
  2. [2] L. Galgani, C. Angaroni, L. Forti, A. Giorgilli and F. Guerra, Classical Electrodynamics as a Nonlinear Dynamical System, Phys. Lett. A, Vol. 139, 1989, pp. 221-230. 
  3. [3] W. Pauli and M. Fierz, Zur Theorie der Emission langwelliger Lichtquanten, Nuovo Cimento, Vol. 15, 1938, pp. 167-188. JFM64.1487.01
  4. [4] M. Abraham, Prinzipien der Dynamik des Elektrons, Ann. der Phys., Vol. 10, 1903, pp. 105-179. Zbl34.0915.02JFM34.0915.02
  5. [5] M. Abraham, Theorie der Elektrizität, Vol. II, Tebeuner, Leipzig-Berlin1908. JFM39.0904.08
  6. [6] A. Einstein, Zum gegenwärtigen Stand des Strahlungsproblems, Phys. Zeit., Vol. 6, 1909, pp. 185-186. Zbl40.0985.01JFM40.0985.01
  7. [7] L. Landau and E. Lifchitz, Théorie des champs, 3rd Ed., MIR, Moscow, 1970. Zbl0144.47605
  8. [8] J.D. Jackson, Classical Electrodynamics, John Wiley & Sons, New York, 1975. Zbl0997.78500
  9. [9] G.A. Schott, The Electromagnetic Field of a Moving Uniformly and Rigidly Electrified Sphere and its Radiationless Orbits, Phyl. Mag., Vol. 15, 1933, pp. 752-761. Zbl0006.38005
  10. [10] D. Bohm and M. Weinstein, The Self Oscillations of a Charged Particle, Phys. Rev., Vol. 74, 1948, pp. 1789-1798. Zbl0031.37805
  11. [11] W.T. Grandy and A. Aghazadeh, Radiative Corrections for Extended Charged Particles in Classical Electrodynamics, Ann. of Physics, Vol. 142, 1982, pp. 284-298. MR678486
  12. [12] E. Zehnder, Siegel Linearization Theorem in Infinite Dimension, Manuscripta Math., Vol. 23, 1978, pp. 363-371. Zbl0374.47037MR501144
  13. [13] N.V. Nikolenko, The Method of Poincaré Normal Form in Problems of Integrability of Equations of Evolution Type, Uspekhi Mat. Nauk., Vol. 41, 5, 1986, pp. 109-152; Russ. Math. Surveys, Vol. 41, 5, 1986, pp. 63-114. Zbl0632.35026MR878327
  14. [14] J. Fröhlich, T. Spencer and C.E. Wayne, Localization in Disordered, Nonlinear Dynamical Systems, J. Stat. Phys., Vol. 42, 1986, pp. 247-274. Zbl0629.60105MR833019
  15. [15] M. Vittot and J. Bellissard, Invariant Tori for an Infinite Lattice of Coupled Classical Rotators, Preprint, 1985. 
  16. [16] S.B. Kuksin, Hamiltonian Perturbations of Infinite-dimensional Linear Systems with Imaginary Spectrum, Funktsional. Anal. i Prilozhen, Vol. 21, 3, 1987, pp. 22-37; Funct. Anal. Appl., Vol. 21, 1987. Zbl0716.34083MR911772
  17. [17] C.E. Wayne, Periodic and Quasi-periodic Solutions of Nonlinear Wave Equation via KAM Theory, Commun. Math. Phys., Vol. 127, 1990, pp. 479-528. Zbl0708.35087MR1040892
  18. [18] J. Pöschel, Small Divisors with Spatial Structure in Infinite Dimensional Hamiltonian Systems, Commun. Math. Phys., Vol. 127, 1990, pp. 351-393. Zbl0702.58065MR1037110
  19. [19] M. Yu. DENISOV, Reduction of the Nonlinear Diffusion Equation to Linear Form, Funktional. Anal. i Prilozhen, Vol. 19, 1, 1985, pp. 69-70; Function. Anal. Appl., Vol. 19, 1985, pp. 57-58. Zbl0657.34041MR783711
  20. [20] M. Yu. Denisov, Reduction of some Nonlinear Evolution Equation with Continuous Spectrum to Linear Part, Differentsial'nye Uravneniya, Vol. 21, 1985, pp. 464-473; Differential equations, Vol. 21, 1985, pp. 312-319. Zbl0566.45011MR785456
  21. [21] G. Benettin, J. Fröhlich and A. Giorgilli, A Nekhoroshev-type Theorem for Hamiltonian Systems with Infinitely Many Degrees of Freedom, Commun. Math. Phys., Vol. 119, 1988, pp. 95-108. Zbl0825.58011MR968482
  22. [22] S.B. Kuksin, An Averaging Theorem for Distributed Conservative Systems and its Application to Von Karman's Equation, PMM U.S.S.R., Vol. 53, 1989, pp. 150-157. Zbl0722.73039MR1004397
  23. [23] D. Bambusi and A. Giorgilli, Exponential stability of states close to resonance in infinite dimensional hamiltonian systems, Jour. Stat. Phys., Vol. 71, 1993. Zbl0943.82549MR1219023
  24. [24] G. Benettin, L. Galgani and A. Giorgilli, Realization of Holonomic Constraints and Freezing of High Frequency Degrees of Freedom in the Light of Classical Perturbation Theory, Part II, Commun. Math. Phys., Vol. 121, 1989, pp. 557-601. Zbl0679.70015MR990993
  25. [25] J.-L. Lions, Problèmes aux Limites, Presses de l'Université de Montréal, 1962. 
  26. [26] R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, Masson, Paris, 1985. Zbl0642.35001
  27. [27] M. Born, Ann. d. Phys., Vol. 30, 1, 1909. JFM40.0930.02
  28. [28] J.S. Nodvik, A covariant Formulation of Classical Electrodynamics for Charges of Finite Extension, Ann. of Phys., Vol. 28, 1964, pp. 225-319. Zbl0119.22203MR168327
  29. [29] A. Giorgilli and L. Galgani, Formal Integrals for an Autonomous Hamiltonian System Near an Equilibrium Point, Cel. Mech., Vol. 17, 1978, pp. 267-280. Zbl0387.70022MR504624
  30. [30] J. Mujica, Complex Analysis in Banach Spaces, North Holland Mathematical Studies120, Amsterdam, 1986. Zbl0586.46040MR842435

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.