Distribution of matrix elements and level spacings for classically chaotic systems
Monique Combescure; Didier Robert
Annales de l'I.H.P. Physique théorique (1994)
- Volume: 61, Issue: 4, page 443-483
- ISSN: 0246-0211
Access Full Article
topHow to cite
topCombescure, Monique, and Robert, Didier. "Distribution of matrix elements and level spacings for classically chaotic systems." Annales de l'I.H.P. Physique théorique 61.4 (1994): 443-483. <http://eudml.org/doc/76665>.
@article{Combescure1994,
author = {Combescure, Monique, Robert, Didier},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {matrix elements of observables; Hamiltonian; quantum observable},
language = {eng},
number = {4},
pages = {443-483},
publisher = {Gauthier-Villars},
title = {Distribution of matrix elements and level spacings for classically chaotic systems},
url = {http://eudml.org/doc/76665},
volume = {61},
year = {1994},
}
TY - JOUR
AU - Combescure, Monique
AU - Robert, Didier
TI - Distribution of matrix elements and level spacings for classically chaotic systems
JO - Annales de l'I.H.P. Physique théorique
PY - 1994
PB - Gauthier-Villars
VL - 61
IS - 4
SP - 443
EP - 483
LA - eng
KW - matrix elements of observables; Hamiltonian; quantum observable
UR - http://eudml.org/doc/76665
ER -
References
top- [1] S. Agmon, Lectures on Exponential Decay of Solutions od Second Order Elliptic Equation. Bound on Eigenfunctions of N-Body Schrödinger operators, Mathematical Notes of Princeton University. Zbl0503.35001MR745286
- [2] M.V. Berry, Classical Adiabatic Angles and Quantal Adiabatic Phase, J. Phys. A., Vol. 18, 1985, pp. 15-27. Zbl0569.70020MR777620
- [3] R. Brummelhuis and A. Uribe, A Trace Formula for Schrödinger Operators, Comm. Math. Phys., Vol. 136, 1991, pp. 567-584. Zbl0729.35093MR1099696
- [4] B.V. Chirikov, Time-Dependent Quantum Systems, in Chaos and Quantum Physics, Les Houches, 1989, North-Holland1991, pp. 518-519. MR1188424
- [5] Y. Colin De Verdière, Ergodicité et fonctions propres du Laplacien, Comm. Math. Phys., Vol. 102, 1985, pp. 497-502. Zbl0592.58050MR818831
- [6] M. Dauge and D. Robert, Weyl's Formula for a Class of Pseudodifferential Operators with Negative Order on L2 (Rn), Lecture Notes in Math, No. 1256, Springer-Verlag, 1986. Zbl0629.35098
- [7] V. Donnay and C. Liverani, Potentials on the Two-Torus for which the Hamiltonian Flow is Ergodic, Comm. Math. Phys., Vol. 135, 1991, pp. 267-302. Zbl0719.58022MR1087385
- [8] S. Dozias, Thesis, DMI, ENS, Paris (to appear).
- [9] J.J. Duistermaat and V. Guillemin, The Spectrum of Positive Elliptic Operators and Periodic Bicharacteristic, Inv. Math., Vol. 29, 1975, pp. 39-79. Zbl0307.35071MR405514
- [10] A. Feingold and A. Peres, Distribution of Matrix Elements of Chaotic Systems, Physical Review A, Vol. 34, No. 1, 1986, pp. 591-595. MR848319
- [11] V. Guillemin, Lectures on Spectral Theory of Elliptic Operators, Duke Math. J., 1977, pp. 485-517. Zbl0463.58024MR448452
- [12] V. Guillemin and A. Uribe, Circular Symmetry and the Trace Formula, Invent. Math., Vol. 96, 1989, pp. 385-423. Zbl0686.58040MR989702
- [13] M. Gutzwiller, Periodic Orbits and Classical Quantization Conditions, J. of Math. Phys., Vol. 12, No. 3, 1971, pp. 343-358.
- [14] B. Helffer, Semi-Classical Analysis for the Schrödinger Operator and Applications, Lecture Notes in Mathematics, No. 1336, Springer-Verlag. Zbl0647.35002MR960278
- [15] B. Helffer, Remarks on Recent Results in Semi-Classical Analysis, Publ. of Technische Universitat, Berlin, 1991.
- [16] B. Helffer, A. Martinez and D. Robert, Ergodicité et limite semi-classique, Comm. Math. Phys., Vol. 109, 1987, pp. 313-326. Zbl0624.58039MR880418
- [17] B. Helffer and D. Robert, Calcul fonctionnel par la transformée de Mellin, J. of Funct. Anal., Vol. 53, No. 3, 1983, pp. 246-268. Zbl0524.35103MR724029
- [18] B. Helffer and D. Robert, Propriétés asymptotiques du spectre d'opérateurs pseudodifférentiels sur Rn, Comm. in PDE, Vol. 7, (7), 1982, pp. 795-882. Zbl0501.35081MR662451
- [19] B. Helffer and J. Sjöstrand, Multiple Wells in the Semi-Classical limit I, Comm. in PDE, Vol. 9, (4), 1984, pp. 337-408. Zbl0546.35053MR740094
- [20] J.W. Helton, An Operator Algebra Approach to Partial Differential Equations, Indiana Univ. Math. J., Vol. 26, 1977, pp. 997-1018. Zbl0373.35060MR494325
- [21] L. Hörmander, The spectral Function of an Elliptic Operator, Acta. Math., Vol. 121, 1968, pp. 193-218. Zbl0164.13201MR609014
- [22] V. Ivrii, Semi-Classical Analysis and Precise Spectral Asymptotics, Preprints, 1, 2, 3, École Polytechnique, 1990/1991.
- [23] S. Mc Donald and A. Kaufman, Spectrum and Eigenfunctions for a Hamiltonian with Stochastic Trajectories, Physical Review Letters, Vol. 42, No. 18, 1979, pp. 1189-1191.
- [24] E. Marshalek and J. Da Providência, Sum Rules, Random-Phase-Approximations, and Constraint Self-Consistent Fields, Physical Review C., Vol. 7, No. 6, 1973, pp. 2281- 2293.
- [25] E. Meirenken, Semi-Classical Principal Symbols and Gutzwiller's Trace Formula, Publ. University of Freiburg, Nov. 1991.
- [26] T. Paul and A. Uribe, Sur la formula semi-classique des traces, C. R. Acad. Sci. Paris, T. 313, Series I, 1991, pp. 217-222. Zbl0738.58046MR1126383
- [27] P. Pechukas, Distribution of Energy Eigenvalues in the Irregular Spectrum, Physical Review Letters, Vol. 51, No. 11, 1983, pp. 943-950. MR717920
- [28] V. Petrov and D. Robert, Asymptotique semi-classique du spectre d'hamiltoniens quantiques et trajectoires classiques périodiques, Comm. in PDE, Vol. 10, (4), 1985, pp. 365-390. Zbl0574.35067MR784682
- [29] M. Pollicott, On the Rate of Mixing of Axiom A Flows, Invent. Math., Vol. 81, 1985, pp. 413-426. Zbl0591.58025MR807065
- [30] T. Prosen and M. Robnik, Distribution and Fluctuations of Transition Probabilities in a System Between Integrability and Chaos, J. Phys. A: Math. Gene., Vol. 26, 1993, pp. L319-L326. Zbl0772.58031
- [31] J.M. Robbins and M.V. Berry, Discordance Between Quantum and Classical Correlation Moments for Chaotic System, J. Phys. A: Math. Gene., Vol. 25, 1992, pp. L961-L965. Zbl0755.58068MR1177543
- [32] J.M. Robbins and M.V. Berry, The Geometric Phase for Chaotic Systems, Proc. R. Soc. Lond. A., Vol. 436, 1991, pp. 631-661. MR1177580
- [33] D. Robert, Autour de l'approximation semi-classique, Birkhaüser, PM 68, 1987. Zbl0621.35001MR897108
- [34] D. Ruelle, Resonances of Chaotic Dynamical Systems, Physical Review Letters, Vol. 56, No. 5, 1986, pp. 405-407. MR824170
- [35] A.I. Shnirelman, Ergodic Properties of Eigenfunctions, Upehi Math. Nauk, Vol. 29, No. 6, 1974, pp. 181-182. Zbl0324.58020MR402834
- [36] A. Voros, Développements semi-classiques, Thèse de doctorat, Paris-Orsay, 1977.
- [37] M. Wilkinson, A Semi-Classical Sum Rule for Matrix Elements of Classically Chaotic Systems, J. Phys. A: Math. Gen., Vol. 20, 1987, pp. 2415-2423. MR895065
- [38] S. Zelditch, Uniform Distribution of Eigenfunctions on Compact Hyperbolic Surfaces, Duke Math. J., Vol. 55, 1987, pp. 919-941. Zbl0643.58029MR916129
- [39] S. Zelditch, Quantum Transition Amplitude for Ergodic and for Completely integrable Systems, J. of Funct. Anal., Vol. 94, No. 2, 1990, pp. 415-436. Zbl0721.58051MR1081652
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.