Distribution of matrix elements and level spacings for classically chaotic systems

Monique Combescure; Didier Robert

Annales de l'I.H.P. Physique théorique (1994)

  • Volume: 61, Issue: 4, page 443-483
  • ISSN: 0246-0211

How to cite

top

Combescure, Monique, and Robert, Didier. "Distribution of matrix elements and level spacings for classically chaotic systems." Annales de l'I.H.P. Physique théorique 61.4 (1994): 443-483. <http://eudml.org/doc/76665>.

@article{Combescure1994,
author = {Combescure, Monique, Robert, Didier},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {matrix elements of observables; Hamiltonian; quantum observable},
language = {eng},
number = {4},
pages = {443-483},
publisher = {Gauthier-Villars},
title = {Distribution of matrix elements and level spacings for classically chaotic systems},
url = {http://eudml.org/doc/76665},
volume = {61},
year = {1994},
}

TY - JOUR
AU - Combescure, Monique
AU - Robert, Didier
TI - Distribution of matrix elements and level spacings for classically chaotic systems
JO - Annales de l'I.H.P. Physique théorique
PY - 1994
PB - Gauthier-Villars
VL - 61
IS - 4
SP - 443
EP - 483
LA - eng
KW - matrix elements of observables; Hamiltonian; quantum observable
UR - http://eudml.org/doc/76665
ER -

References

top
  1. [1] S. Agmon, Lectures on Exponential Decay of Solutions od Second Order Elliptic Equation. Bound on Eigenfunctions of N-Body Schrödinger operators, Mathematical Notes of Princeton University. Zbl0503.35001MR745286
  2. [2] M.V. Berry, Classical Adiabatic Angles and Quantal Adiabatic Phase, J. Phys. A., Vol. 18, 1985, pp. 15-27. Zbl0569.70020MR777620
  3. [3] R. Brummelhuis and A. Uribe, A Trace Formula for Schrödinger Operators, Comm. Math. Phys., Vol. 136, 1991, pp. 567-584. Zbl0729.35093MR1099696
  4. [4] B.V. Chirikov, Time-Dependent Quantum Systems, in Chaos and Quantum Physics, Les Houches, 1989, North-Holland1991, pp. 518-519. MR1188424
  5. [5] Y. Colin De Verdière, Ergodicité et fonctions propres du Laplacien, Comm. Math. Phys., Vol. 102, 1985, pp. 497-502. Zbl0592.58050MR818831
  6. [6] M. Dauge and D. Robert, Weyl's Formula for a Class of Pseudodifferential Operators with Negative Order on L2 (Rn), Lecture Notes in Math, No. 1256, Springer-Verlag, 1986. Zbl0629.35098
  7. [7] V. Donnay and C. Liverani, Potentials on the Two-Torus for which the Hamiltonian Flow is Ergodic, Comm. Math. Phys., Vol. 135, 1991, pp. 267-302. Zbl0719.58022MR1087385
  8. [8] S. Dozias, Thesis, DMI, ENS, Paris (to appear). 
  9. [9] J.J. Duistermaat and V. Guillemin, The Spectrum of Positive Elliptic Operators and Periodic Bicharacteristic, Inv. Math., Vol. 29, 1975, pp. 39-79. Zbl0307.35071MR405514
  10. [10] A. Feingold and A. Peres, Distribution of Matrix Elements of Chaotic Systems, Physical Review A, Vol. 34, No. 1, 1986, pp. 591-595. MR848319
  11. [11] V. Guillemin, Lectures on Spectral Theory of Elliptic Operators, Duke Math. J., 1977, pp. 485-517. Zbl0463.58024MR448452
  12. [12] V. Guillemin and A. Uribe, Circular Symmetry and the Trace Formula, Invent. Math., Vol. 96, 1989, pp. 385-423. Zbl0686.58040MR989702
  13. [13] M. Gutzwiller, Periodic Orbits and Classical Quantization Conditions, J. of Math. Phys., Vol. 12, No. 3, 1971, pp. 343-358. 
  14. [14] B. Helffer, Semi-Classical Analysis for the Schrödinger Operator and Applications, Lecture Notes in Mathematics, No. 1336, Springer-Verlag. Zbl0647.35002MR960278
  15. [15] B. Helffer, Remarks on Recent Results in Semi-Classical Analysis, Publ. of Technische Universitat, Berlin, 1991. 
  16. [16] B. Helffer, A. Martinez and D. Robert, Ergodicité et limite semi-classique, Comm. Math. Phys., Vol. 109, 1987, pp. 313-326. Zbl0624.58039MR880418
  17. [17] B. Helffer and D. Robert, Calcul fonctionnel par la transformée de Mellin, J. of Funct. Anal., Vol. 53, No. 3, 1983, pp. 246-268. Zbl0524.35103MR724029
  18. [18] B. Helffer and D. Robert, Propriétés asymptotiques du spectre d'opérateurs pseudodifférentiels sur Rn, Comm. in PDE, Vol. 7, (7), 1982, pp. 795-882. Zbl0501.35081MR662451
  19. [19] B. Helffer and J. Sjöstrand, Multiple Wells in the Semi-Classical limit I, Comm. in PDE, Vol. 9, (4), 1984, pp. 337-408. Zbl0546.35053MR740094
  20. [20] J.W. Helton, An Operator Algebra Approach to Partial Differential Equations, Indiana Univ. Math. J., Vol. 26, 1977, pp. 997-1018. Zbl0373.35060MR494325
  21. [21] L. Hörmander, The spectral Function of an Elliptic Operator, Acta. Math., Vol. 121, 1968, pp. 193-218. Zbl0164.13201MR609014
  22. [22] V. Ivrii, Semi-Classical Analysis and Precise Spectral Asymptotics, Preprints, 1, 2, 3, École Polytechnique, 1990/1991. 
  23. [23] S. Mc Donald and A. Kaufman, Spectrum and Eigenfunctions for a Hamiltonian with Stochastic Trajectories, Physical Review Letters, Vol. 42, No. 18, 1979, pp. 1189-1191. 
  24. [24] E. Marshalek and J. Da Providência, Sum Rules, Random-Phase-Approximations, and Constraint Self-Consistent Fields, Physical Review C., Vol. 7, No. 6, 1973, pp. 2281- 2293. 
  25. [25] E. Meirenken, Semi-Classical Principal Symbols and Gutzwiller's Trace Formula, Publ. University of Freiburg, Nov. 1991. 
  26. [26] T. Paul and A. Uribe, Sur la formula semi-classique des traces, C. R. Acad. Sci. Paris, T. 313, Series I, 1991, pp. 217-222. Zbl0738.58046MR1126383
  27. [27] P. Pechukas, Distribution of Energy Eigenvalues in the Irregular Spectrum, Physical Review Letters, Vol. 51, No. 11, 1983, pp. 943-950. MR717920
  28. [28] V. Petrov and D. Robert, Asymptotique semi-classique du spectre d'hamiltoniens quantiques et trajectoires classiques périodiques, Comm. in PDE, Vol. 10, (4), 1985, pp. 365-390. Zbl0574.35067MR784682
  29. [29] M. Pollicott, On the Rate of Mixing of Axiom A Flows, Invent. Math., Vol. 81, 1985, pp. 413-426. Zbl0591.58025MR807065
  30. [30] T. Prosen and M. Robnik, Distribution and Fluctuations of Transition Probabilities in a System Between Integrability and Chaos, J. Phys. A: Math. Gene., Vol. 26, 1993, pp. L319-L326. Zbl0772.58031
  31. [31] J.M. Robbins and M.V. Berry, Discordance Between Quantum and Classical Correlation Moments for Chaotic System, J. Phys. A: Math. Gene., Vol. 25, 1992, pp. L961-L965. Zbl0755.58068MR1177543
  32. [32] J.M. Robbins and M.V. Berry, The Geometric Phase for Chaotic Systems, Proc. R. Soc. Lond. A., Vol. 436, 1991, pp. 631-661. MR1177580
  33. [33] D. Robert, Autour de l'approximation semi-classique, Birkhaüser, PM 68, 1987. Zbl0621.35001MR897108
  34. [34] D. Ruelle, Resonances of Chaotic Dynamical Systems, Physical Review Letters, Vol. 56, No. 5, 1986, pp. 405-407. MR824170
  35. [35] A.I. Shnirelman, Ergodic Properties of Eigenfunctions, Upehi Math. Nauk, Vol. 29, No. 6, 1974, pp. 181-182. Zbl0324.58020MR402834
  36. [36] A. Voros, Développements semi-classiques, Thèse de doctorat, Paris-Orsay, 1977. 
  37. [37] M. Wilkinson, A Semi-Classical Sum Rule for Matrix Elements of Classically Chaotic Systems, J. Phys. A: Math. Gen., Vol. 20, 1987, pp. 2415-2423. MR895065
  38. [38] S. Zelditch, Uniform Distribution of Eigenfunctions on Compact Hyperbolic Surfaces, Duke Math. J., Vol. 55, 1987, pp. 919-941. Zbl0643.58029MR916129
  39. [39] S. Zelditch, Quantum Transition Amplitude for Ergodic and for Completely integrable Systems, J. of Funct. Anal., Vol. 94, No. 2, 1990, pp. 415-436. Zbl0721.58051MR1081652

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.