Egorov theorems and equidistribution of eigenfunctions for the quantized sawtooth and Baker maps

S. De Bièvre; M. Degli Esposti

Annales de l'I.H.P. Physique théorique (1998)

  • Volume: 69, Issue: 1, page 1-30
  • ISSN: 0246-0211

How to cite

top

De Bièvre, S., and Degli Esposti, M.. "Egorov theorems and equidistribution of eigenfunctions for the quantized sawtooth and Baker maps." Annales de l'I.H.P. Physique théorique 69.1 (1998): 1-30. <http://eudml.org/doc/76795>.

@article{DeBièvre1998,
author = {De Bièvre, S., Degli Esposti, M.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {quantized Baker map; quantized sawtooth map; generalized Egorov estimates},
language = {eng},
number = {1},
pages = {1-30},
publisher = {Gauthier-Villars},
title = {Egorov theorems and equidistribution of eigenfunctions for the quantized sawtooth and Baker maps},
url = {http://eudml.org/doc/76795},
volume = {69},
year = {1998},
}

TY - JOUR
AU - De Bièvre, S.
AU - Degli Esposti, M.
TI - Egorov theorems and equidistribution of eigenfunctions for the quantized sawtooth and Baker maps
JO - Annales de l'I.H.P. Physique théorique
PY - 1998
PB - Gauthier-Villars
VL - 69
IS - 1
SP - 1
EP - 30
LA - eng
KW - quantized Baker map; quantized sawtooth map; generalized Egorov estimates
UR - http://eudml.org/doc/76795
ER -

References

top
  1. [1] V.I. Arnold, A. Avez, Ergodic Problems in Classical Mechanics, Benjamin, New York, 1968. Zbl0167.22901MR232910
  2. [2] N.L. Balazs, A. Voros, The Quantized Baker's Transformation, Annals of Physics, Vol. 190, 1989, 1-31. Zbl0664.58045MR994045
  3. [3] A. Bouzouina, S. De Bièvre, Equipartition of the eigenfunctions of quantized ergodic maps on the torus, Commun. Math. Phys., Vol. 178, 1996, 83-105. Zbl0876.58041MR1387942
  4. [4] M. Basilio de Matos and A.M. Ozerio de Almeida, Quantization of Anosov maps, Annals of Physics, Vol. 237, 1, 1995, 46-65. Zbl0812.58041MR1309729
  5. [5] J. Chazarain, Construction de la paramétrix du problème mixte hyperbolique pour l'équation d'ondes, C. R. Acad. Sci. Paris, Vol. 276, 1973, 1213-1215. Zbl0253.35058MR320536
  6. [6] N. Chernoff, Ergodic and statistical properties of piecewise linear hyperbolic automorphisms of the two-torus, J. Stat. Phys., Vol. 69, 1992, 111-134. Zbl0925.58072MR1184772
  7. [7] Y. Colin de Verdière, Ergodicité et functions propres du Laplacien, Commun. Math. Phys., Vol. 102, 1985, 497-502. Zbl0592.58050MR818831
  8. [8] M. Combescure, D. Robert, Distribution of matrix elements and level spacings for classical chaotic systems, Ann. Inst. H. Poincaré, Vol. 61, 4, 1994, 443-483. Zbl0833.58018MR1311538
  9. [9] S. De Bièvre, M. Degli Esposti and R. Giachetti,Quantization of a class of piecewise affine transformations on the torus, Commun. Math. Phys., Vol. 176, 1995, 73-94. Zbl0840.58019MR1372818
  10. [10] M. Degli Esposti, Quantization of the orientation preserving automorphisms of the torus, Ann. Inst. Henri Poincaré, Vol. 58, 1993, 323-341. Zbl0777.58017MR1222946
  11. [11] M. Degli Esposti, S. Isola and S. Graffi, Classical limit of the quantized hyperbolic toral automorphisms, Commun. Math. Phys., Vol. 167, 1995, 471-507. Zbl0822.58022MR1316757
  12. [12] R.E. Edwards, Fourier Series. A modern Introduction. Volume 1, Graduate Text in Mathematics, Vol. 64, 1979. Zbl0424.42001
  13. [13] M. Farris, Egorov's theorem on a manifold with diffractive boundary, Comm. P. D. E., Vol. 6, 6, 1981, 651-687. Zbl0474.58019MR617785
  14. [14] P. Gerard, E. Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. Jour., Vol. 71, 1993, 559-607. Zbl0788.35103MR1233448
  15. [15] J.H. Hannay, M.V. Berry, Quantization of linear maps on a torus - Fresnel diffraction by a periodic grating, Physica D, Vol. 1, 1980, 267-291. Zbl1194.81107MR602111
  16. [16] J.H. Hannay, J.P. Keating, A.M. Ozorio de Almeida, Optical realization of the baker's transformation, Nonlinearity, Vol. 7, 1994, 1327-1342 Zbl0803.58025MR1294545
  17. [17] B. Helffer, A.MARTINEZ, D. Robert, Ergodicité et limite semi-classique, Commun. Math. Phys., Vol. 131, 1985, 493-520. Zbl0624.58039
  18. [18] J. Keating, Ph. D. thesisUniversity of Bristol, 1989. 
  19. [19] J. Keating, The cat maps: quantum mechanics and classical motion, Nonlinearity, Vol. 4, 1991, 309-341. Zbl0726.58037MR1107009
  20. [20] A. Laskshminarayan, Semiclassical theory of the Sawtooth map, Phys. Lett. A, Vol. 192, 1994, 345-354. Zbl0960.81518MR1291311
  21. [21] C. Liverani, Decay of correlations, Annals of Mathematics, Vol. 142, 1995, 239-301. Zbl0871.58059MR1343323
  22. [22] C. Liverani, M.P. Wojtkowski, Ergodicity in Hamiltonian systems, to appear in Dyn. Rep., Vol. 4. Zbl0824.58033MR1346498
  23. [23] P. O'Connor, R. Heller, S. Tomsovic, Semiclassical dynamics in the strongly chaotic regime: breaking the log-time barrier, Physica D, Vol. 55, 1992, 340-357. Zbl0753.58029MR1156735
  24. [24] D. Robert, Autour de l'approximation semi-classique, BirkhaüserBoston, 1987. Zbl0621.35001MR897108
  25. [25] P. Sarnak, Arithmetic quantum chaos, Tel Aviv Lectures, 1993. Zbl0831.58045
  26. [26] M. Saraceno, Classical structures in the quantized Baker transformation, Annals of Physics, Vol. 199, 1990, 37-60. Zbl0724.58059MR1048673
  27. [27] M. Saraceno, A. Voros, Towards a semiclassical theory of the quantum baker's map, Physica D, Vol. 79, 1994, 206-268. Zbl0888.58036MR1306462
  28. [28] M. Saraceno, R.O. Vallejos, The quantized D-transformation, (preprint 1995). Zbl1055.81558MR1393556
  29. [29] S. Vaienti, Ergodic properties of the discontinuous sawtooth map, J. Stat. Phys., Vol. 67, 1992, 251. Zbl0892.58049MR1159464
  30. [30] S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. Jour., 55, 1987, 919-941. Zbl0643.58029MR916129
  31. [3 1 ] S. Zelditch, Quantum transition amplitudes for ergodic and completely integrable systems, Journ. Funct. Ana., Vol. 94, 1990, 415-436. Zbl0721.58051MR1081652
  32. [32] S. Zelditch, Quantum ergodicity of C* dynamical systems, Commun. Math. Phys., Vol. 177, 1996, 507-528. Zbl0856.58019MR1384146
  33. [33] S. Zelditch, Index and dynamics of quantized contact transformations, Ann. Inst. Fourier, Vol. 47, 1997, 305-363. Zbl0865.47018MR1437187
  34. [34] S. Zelditch, M. Zworski, Ergodicity of eigenfunctions for ergodic billiards, Commun. Math. Phys., Vol. 175, 1996, 3, 673-682. Zbl0840.58048MR1372814

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.