Egorov theorems and equidistribution of eigenfunctions for the quantized sawtooth and Baker maps
S. De Bièvre; M. Degli Esposti
Annales de l'I.H.P. Physique théorique (1998)
- Volume: 69, Issue: 1, page 1-30
- ISSN: 0246-0211
Access Full Article
topHow to cite
topDe Bièvre, S., and Degli Esposti, M.. "Egorov theorems and equidistribution of eigenfunctions for the quantized sawtooth and Baker maps." Annales de l'I.H.P. Physique théorique 69.1 (1998): 1-30. <http://eudml.org/doc/76795>.
@article{DeBièvre1998,
author = {De Bièvre, S., Degli Esposti, M.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {quantized Baker map; quantized sawtooth map; generalized Egorov estimates},
language = {eng},
number = {1},
pages = {1-30},
publisher = {Gauthier-Villars},
title = {Egorov theorems and equidistribution of eigenfunctions for the quantized sawtooth and Baker maps},
url = {http://eudml.org/doc/76795},
volume = {69},
year = {1998},
}
TY - JOUR
AU - De Bièvre, S.
AU - Degli Esposti, M.
TI - Egorov theorems and equidistribution of eigenfunctions for the quantized sawtooth and Baker maps
JO - Annales de l'I.H.P. Physique théorique
PY - 1998
PB - Gauthier-Villars
VL - 69
IS - 1
SP - 1
EP - 30
LA - eng
KW - quantized Baker map; quantized sawtooth map; generalized Egorov estimates
UR - http://eudml.org/doc/76795
ER -
References
top- [1] V.I. Arnold, A. Avez, Ergodic Problems in Classical Mechanics, Benjamin, New York, 1968. Zbl0167.22901MR232910
- [2] N.L. Balazs, A. Voros, The Quantized Baker's Transformation, Annals of Physics, Vol. 190, 1989, 1-31. Zbl0664.58045MR994045
- [3] A. Bouzouina, S. De Bièvre, Equipartition of the eigenfunctions of quantized ergodic maps on the torus, Commun. Math. Phys., Vol. 178, 1996, 83-105. Zbl0876.58041MR1387942
- [4] M. Basilio de Matos and A.M. Ozerio de Almeida, Quantization of Anosov maps, Annals of Physics, Vol. 237, 1, 1995, 46-65. Zbl0812.58041MR1309729
- [5] J. Chazarain, Construction de la paramétrix du problème mixte hyperbolique pour l'équation d'ondes, C. R. Acad. Sci. Paris, Vol. 276, 1973, 1213-1215. Zbl0253.35058MR320536
- [6] N. Chernoff, Ergodic and statistical properties of piecewise linear hyperbolic automorphisms of the two-torus, J. Stat. Phys., Vol. 69, 1992, 111-134. Zbl0925.58072MR1184772
- [7] Y. Colin de Verdière, Ergodicité et functions propres du Laplacien, Commun. Math. Phys., Vol. 102, 1985, 497-502. Zbl0592.58050MR818831
- [8] M. Combescure, D. Robert, Distribution of matrix elements and level spacings for classical chaotic systems, Ann. Inst. H. Poincaré, Vol. 61, 4, 1994, 443-483. Zbl0833.58018MR1311538
- [9] S. De Bièvre, M. Degli Esposti and R. Giachetti,Quantization of a class of piecewise affine transformations on the torus, Commun. Math. Phys., Vol. 176, 1995, 73-94. Zbl0840.58019MR1372818
- [10] M. Degli Esposti, Quantization of the orientation preserving automorphisms of the torus, Ann. Inst. Henri Poincaré, Vol. 58, 1993, 323-341. Zbl0777.58017MR1222946
- [11] M. Degli Esposti, S. Isola and S. Graffi, Classical limit of the quantized hyperbolic toral automorphisms, Commun. Math. Phys., Vol. 167, 1995, 471-507. Zbl0822.58022MR1316757
- [12] R.E. Edwards, Fourier Series. A modern Introduction. Volume 1, Graduate Text in Mathematics, Vol. 64, 1979. Zbl0424.42001
- [13] M. Farris, Egorov's theorem on a manifold with diffractive boundary, Comm. P. D. E., Vol. 6, 6, 1981, 651-687. Zbl0474.58019MR617785
- [14] P. Gerard, E. Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. Jour., Vol. 71, 1993, 559-607. Zbl0788.35103MR1233448
- [15] J.H. Hannay, M.V. Berry, Quantization of linear maps on a torus - Fresnel diffraction by a periodic grating, Physica D, Vol. 1, 1980, 267-291. Zbl1194.81107MR602111
- [16] J.H. Hannay, J.P. Keating, A.M. Ozorio de Almeida, Optical realization of the baker's transformation, Nonlinearity, Vol. 7, 1994, 1327-1342 Zbl0803.58025MR1294545
- [17] B. Helffer, A.MARTINEZ, D. Robert, Ergodicité et limite semi-classique, Commun. Math. Phys., Vol. 131, 1985, 493-520. Zbl0624.58039
- [18] J. Keating, Ph. D. thesisUniversity of Bristol, 1989.
- [19] J. Keating, The cat maps: quantum mechanics and classical motion, Nonlinearity, Vol. 4, 1991, 309-341. Zbl0726.58037MR1107009
- [20] A. Laskshminarayan, Semiclassical theory of the Sawtooth map, Phys. Lett. A, Vol. 192, 1994, 345-354. Zbl0960.81518MR1291311
- [21] C. Liverani, Decay of correlations, Annals of Mathematics, Vol. 142, 1995, 239-301. Zbl0871.58059MR1343323
- [22] C. Liverani, M.P. Wojtkowski, Ergodicity in Hamiltonian systems, to appear in Dyn. Rep., Vol. 4. Zbl0824.58033MR1346498
- [23] P. O'Connor, R. Heller, S. Tomsovic, Semiclassical dynamics in the strongly chaotic regime: breaking the log-time barrier, Physica D, Vol. 55, 1992, 340-357. Zbl0753.58029MR1156735
- [24] D. Robert, Autour de l'approximation semi-classique, BirkhaüserBoston, 1987. Zbl0621.35001MR897108
- [25] P. Sarnak, Arithmetic quantum chaos, Tel Aviv Lectures, 1993. Zbl0831.58045
- [26] M. Saraceno, Classical structures in the quantized Baker transformation, Annals of Physics, Vol. 199, 1990, 37-60. Zbl0724.58059MR1048673
- [27] M. Saraceno, A. Voros, Towards a semiclassical theory of the quantum baker's map, Physica D, Vol. 79, 1994, 206-268. Zbl0888.58036MR1306462
- [28] M. Saraceno, R.O. Vallejos, The quantized D-transformation, (preprint 1995). Zbl1055.81558MR1393556
- [29] S. Vaienti, Ergodic properties of the discontinuous sawtooth map, J. Stat. Phys., Vol. 67, 1992, 251. Zbl0892.58049MR1159464
- [30] S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. Jour., 55, 1987, 919-941. Zbl0643.58029MR916129
- [3 1 ] S. Zelditch, Quantum transition amplitudes for ergodic and completely integrable systems, Journ. Funct. Ana., Vol. 94, 1990, 415-436. Zbl0721.58051MR1081652
- [32] S. Zelditch, Quantum ergodicity of C* dynamical systems, Commun. Math. Phys., Vol. 177, 1996, 507-528. Zbl0856.58019MR1384146
- [33] S. Zelditch, Index and dynamics of quantized contact transformations, Ann. Inst. Fourier, Vol. 47, 1997, 305-363. Zbl0865.47018MR1437187
- [34] S. Zelditch, M. Zworski, Ergodicity of eigenfunctions for ergodic billiards, Commun. Math. Phys., Vol. 175, 1996, 3, 673-682. Zbl0840.58048MR1372814
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.