On classical intrinsically resonant formal perturbation theory

Marcin Moszyński

Annales de l'I.H.P. Physique théorique (1995)

  • Volume: 63, Issue: 2, page 125-154
  • ISSN: 0246-0211

How to cite

top

Moszyński, Marcin. "On classical intrinsically resonant formal perturbation theory." Annales de l'I.H.P. Physique théorique 63.2 (1995): 125-154. <http://eudml.org/doc/76690>.

@article{Moszyński1995,
author = {Moszyński, Marcin},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {-dimensional resonant harmonic oscillator; Birkhoff normal form},
language = {eng},
number = {2},
pages = {125-154},
publisher = {Gauthier-Villars},
title = {On classical intrinsically resonant formal perturbation theory},
url = {http://eudml.org/doc/76690},
volume = {63},
year = {1995},
}

TY - JOUR
AU - Moszyński, Marcin
TI - On classical intrinsically resonant formal perturbation theory
JO - Annales de l'I.H.P. Physique théorique
PY - 1995
PB - Gauthier-Villars
VL - 63
IS - 2
SP - 125
EP - 154
LA - eng
KW - -dimensional resonant harmonic oscillator; Birkhoff normal form
UR - http://eudml.org/doc/76690
ER -

References

top
  1. [1] W.I. Arnold, Mathematical Methods of Classical Mechanics, Moscow, Nauka, 1974 (in Russian). MR474390
  2. [2] G. Benerfin, L. Galgani, A. Giorgilli and J.-M. Strelcyn, A proof of Kolmogorov's theorem on invariant tori using canonical transformations defined by the Lie method, Il Nuovo Cimento, Vol. 79 B, No. 2, 1984, pp. 201-223. MR743977
  3. [3] G. Benettin and G. Gallavotti, Stability of motion near resonances in quasi integrable hamiltonian systems, Journal of Statistical Physics, Vol. 44, 1986, pp. 293-338. Zbl0636.70018MR857061
  4. [4] M. Degli Esposti, S. Graffi and J. Herczyński, Quantization of the classical Lie algorithm in the Bargman representation, Annals of Physics, Vol. 209, 1991, pp. 364-392. Zbl0875.47008MR1117300
  5. [5] F. Fassó, Lie series method for vector fields and hamiltonian perturbation theory, Journal of Applied Mathematics and Physics (ZAMP), Vol. 41, 1990, pp. 843-864. Zbl0746.70012MR1082741
  6. [6] J. Ford and G.H. Lunsford, Stochastic behaviour of resonant nearly linear oscillator systems in the limit of zero nonlinear coupling, Physical Review, Vol. 1 A, 1970, pp. 59-70. 
  7. [7] G. Galavotti, The Elements of Mechanics, New York, Springer, 1983. Zbl0512.70001MR698947
  8. [8] A. Giorgilli and L. Galgani, Rigorous estimates for the series expansions of hamiltonian perturbation theory, Celestial Mechanics, Vol. 37, 1985, pp. 95-112. MR838181
  9. [9] J. Herczyński, A note on uniqueness of the normal form for quasi-integrable systems, Meccanica, Vol. 27, 1992, pp. 281-284. Zbl0768.58043
  10. [10] E.F. Jager and A.L. Lichtenberg, Resonant modification and destruction of adiabatic invariants, Annals of Physics, Vol. 71, 1972, pp. 319-356. 
  11. [11] P.V. Koseleff, Calcul formel pour les méthodes de Lie en mécanique hamiltonienne, Thèse, École Polytechnique, Paris, 1993. 
  12. [12] A.J. Lichtenberg and M.A. Lieberman, Regular and Stochastic Motion, Berlin, Springer, 1983. Zbl0506.70016MR681862
  13. [13] P. Lochak, Canonical perturbation theory via simultaneous approximation, Russian Mathematical Surveys, Vol. 47:6, 1992, pp. 57-133. Zbl0795.58042MR1209145
  14. [14] P. Lochak, Stability of hamiltonian systems over exponentially long times. The nearlinear case, Proceedings of the Cincinnati 1992 Conference on Hamiltonian Dynamical Systems, IMA Publ. Zbl0836.58025
  15. [15] B. McNamara and R.I. Whiteman, Invariants of nearly periodic hamiltonian systems, Culham Laboratory Report, CLM P111, 1966, Culham England. Zbl0176.23003
  16. [16] H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, Vol. 1, Paris, Gauthier-Villars, 1897. JFM24.1130.01
  17. [17] J. Pöschel, Nekhoroshev estimates for quasiconvex hamiltonian systems, Mathematishe Zeitschrift, Vol. 213, 1993, pp. 187-216. Zbl0857.70009MR1221713
  18. [18] H. Scott Dumas, A Nekhoroshev-like theory of classical particle channeling in perfect crystals, Dynamics Reported, Expositions in Dynamical Systems, New Series, Vol. 2, 1993, pp. 69-115. Zbl0795.70010MR1347925

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.