On classical intrinsically resonant formal perturbation theory
Annales de l'I.H.P. Physique théorique (1995)
- Volume: 63, Issue: 2, page 125-154
- ISSN: 0246-0211
Access Full Article
topHow to cite
topReferences
top- [1] W.I. Arnold, Mathematical Methods of Classical Mechanics, Moscow, Nauka, 1974 (in Russian). MR474390
- [2] G. Benerfin, L. Galgani, A. Giorgilli and J.-M. Strelcyn, A proof of Kolmogorov's theorem on invariant tori using canonical transformations defined by the Lie method, Il Nuovo Cimento, Vol. 79 B, No. 2, 1984, pp. 201-223. MR743977
- [3] G. Benettin and G. Gallavotti, Stability of motion near resonances in quasi integrable hamiltonian systems, Journal of Statistical Physics, Vol. 44, 1986, pp. 293-338. Zbl0636.70018MR857061
- [4] M. Degli Esposti, S. Graffi and J. Herczyński, Quantization of the classical Lie algorithm in the Bargman representation, Annals of Physics, Vol. 209, 1991, pp. 364-392. Zbl0875.47008MR1117300
- [5] F. Fassó, Lie series method for vector fields and hamiltonian perturbation theory, Journal of Applied Mathematics and Physics (ZAMP), Vol. 41, 1990, pp. 843-864. Zbl0746.70012MR1082741
- [6] J. Ford and G.H. Lunsford, Stochastic behaviour of resonant nearly linear oscillator systems in the limit of zero nonlinear coupling, Physical Review, Vol. 1 A, 1970, pp. 59-70.
- [7] G. Galavotti, The Elements of Mechanics, New York, Springer, 1983. Zbl0512.70001MR698947
- [8] A. Giorgilli and L. Galgani, Rigorous estimates for the series expansions of hamiltonian perturbation theory, Celestial Mechanics, Vol. 37, 1985, pp. 95-112. MR838181
- [9] J. Herczyński, A note on uniqueness of the normal form for quasi-integrable systems, Meccanica, Vol. 27, 1992, pp. 281-284. Zbl0768.58043
- [10] E.F. Jager and A.L. Lichtenberg, Resonant modification and destruction of adiabatic invariants, Annals of Physics, Vol. 71, 1972, pp. 319-356.
- [11] P.V. Koseleff, Calcul formel pour les méthodes de Lie en mécanique hamiltonienne, Thèse, École Polytechnique, Paris, 1993.
- [12] A.J. Lichtenberg and M.A. Lieberman, Regular and Stochastic Motion, Berlin, Springer, 1983. Zbl0506.70016MR681862
- [13] P. Lochak, Canonical perturbation theory via simultaneous approximation, Russian Mathematical Surveys, Vol. 47:6, 1992, pp. 57-133. Zbl0795.58042MR1209145
- [14] P. Lochak, Stability of hamiltonian systems over exponentially long times. The nearlinear case, Proceedings of the Cincinnati 1992 Conference on Hamiltonian Dynamical Systems, IMA Publ. Zbl0836.58025
- [15] B. McNamara and R.I. Whiteman, Invariants of nearly periodic hamiltonian systems, Culham Laboratory Report, CLM P111, 1966, Culham England. Zbl0176.23003
- [16] H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, Vol. 1, Paris, Gauthier-Villars, 1897. JFM24.1130.01
- [17] J. Pöschel, Nekhoroshev estimates for quasiconvex hamiltonian systems, Mathematishe Zeitschrift, Vol. 213, 1993, pp. 187-216. Zbl0857.70009MR1221713
- [18] H. Scott Dumas, A Nekhoroshev-like theory of classical particle channeling in perfect crystals, Dynamics Reported, Expositions in Dynamical Systems, New Series, Vol. 2, 1993, pp. 69-115. Zbl0795.70010MR1347925