On the use of modular groups in quantum field theory

H. J. Borchers

Annales de l'I.H.P. Physique théorique (1995)

  • Volume: 63, Issue: 4, page 331-382
  • ISSN: 0246-0211

How to cite

top

Borchers, H. J.. "On the use of modular groups in quantum field theory." Annales de l'I.H.P. Physique théorique 63.4 (1995): 331-382. <http://eudml.org/doc/76702>.

@article{Borchers1995,
author = {Borchers, H. J.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Tomita-Takesaki modular theory; local observables; reconstruction of the translation-group; spectrum condition; modular conjugations; algebras associated with wedge-domains; modular transformations; Poincaré transformations; wedge-duality},
language = {eng},
number = {4},
pages = {331-382},
publisher = {Gauthier-Villars},
title = {On the use of modular groups in quantum field theory},
url = {http://eudml.org/doc/76702},
volume = {63},
year = {1995},
}

TY - JOUR
AU - Borchers, H. J.
TI - On the use of modular groups in quantum field theory
JO - Annales de l'I.H.P. Physique théorique
PY - 1995
PB - Gauthier-Villars
VL - 63
IS - 4
SP - 331
EP - 382
LA - eng
KW - Tomita-Takesaki modular theory; local observables; reconstruction of the translation-group; spectrum condition; modular conjugations; algebras associated with wedge-domains; modular transformations; Poincaré transformations; wedge-duality
UR - http://eudml.org/doc/76702
ER -

References

top
  1. [BW1] J. Bisognano and E.H. Wichmann, On the duality condition for a Hermitian scalar field, J. Math. Phys., Vol. 16, 1975, pp. 985-1007. Zbl0316.46062MR438943
  2. [BW2] J. Bisognano and E.H. Wichmann, On the duality condition for quantitum fields, J. Math. Phys., Vol. 17, 1976, pp. 303-321. MR438944
  3. [Boa] R.P. Boas, Entire Functions, Academic Press, New York, 1954. Zbl0058.30201MR68627
  4. [Bch1] H.-J. Borchers, Translation Group and Modular Automorphisms for Local Regions, Commun. Math. Phys., Vol. 132, 1990, pp. 189-199. Zbl0717.46057MR1069208
  5. [Bch2] H.-J. Borchers, The CPT-Theorem in Two-dimensional Theories of Local Observables, Commun. Math. Phys., Vol. 143, 1992, pp. 315-332. Zbl0751.46045MR1145798
  6. [Bch3] H.-J. Borchers, On Modular Inclusion and Spectrum Condition, Lett. Math. Phys., Vol. 27, 1993, pp. 311-324. Zbl0810.46074MR1219504
  7. [Bch4] H.-J. Borchers, When does Lorentz Invariance imply Wedge-Duality?, Lett. Math. Phys., Vol. 35, 1995, pp. 39-60. Zbl0833.46054MR1346044
  8. [BY] H.-J. Borchers and J. Yngvason, From Quantum Field to local von Neumann Algebras, Rev. Math. Phys., Special Issue, 1992, pp. 15-47. Zbl0785.46062MR1199168
  9. [BR] O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics I, Springer Verlag, New York, Heidelberg, Berlin, 1979. Zbl0421.46048MR611508
  10. [BOT] H.J. Bremermann, R. Oehme and J.G. Taylor, Proof of dispersion relation in quantized field theories, Phys. Rev., Vol. 109, 1958, pp. 2178-2190. Zbl0081.43601MR97252
  11. [BEGS] J. Bros, H. Epstein, V. Glaser and R. Stora, Quelques aspects globaux des problèmes d'Edge-of-the-Wedge, In: Hyperfunctions and Theoretical Physics (Nide Rencontre 1973), Lecture Notes in Mathematics, Vol. 449, Springer-Verlag, Berlin, Heidelberg, New York, 1975. Zbl0317.32013MR419831
  12. [BGL1] R. Brunetti, D. Guido and R. Longo, Modular structure and duality in conformal quantum field theory, Commun. Math. Phys., Vol. 156, 1993, pp. 201-219. Zbl0809.46086MR1234110
  13. [BGL2] R. Brunetti, D. Guido and R. Longo, Group cohomology, modular theory and space-time symmetrics, to appear in Rev. Math. Phys. Zbl0837.46058MR1310766
  14. [Bu] D. Buchholz, On the Structure of Local Quantum Fields with Non-trivial Interactions, In: Proceedings of the International Conference on Operator Algebras, Ideals and their Applications in Thepretical Physics, Leipzig, 1977, Teubner-Texte zur Mathematik, 1978, pp. 146-153. Zbl0404.46054MR528269
  15. [BDL1,2] D. Buchholz, C. D'Antoni and R. Longo, Nuclear Maps and Modular Structures, I. General Properties, Jour. Func. Analysis, Vol. 88, 1990, pp. 233-250.II. Application to Quantum Field Theory, Commun. Math. Phys., Vol. 129, 1990, pp. 115-138. Zbl0705.46033MR1038440
  16. [BJ] D. Buchholz and P. Junglas, On the existence of equilibrium states in local quantum field theory, Commun. Math. Phys., Vol. 121, 1989, pp. 255-270. Zbl0673.46045MR985398
  17. [BSM] D. Buchholz and H. Schulz-Mirbach, Haag-duality in conformal quantum field theory, Rev. Math. Phys., Vol. 2, 1990, p. 105. Zbl0748.46040MR1079298
  18. [BuSu1] D. Buchholz and S.J. Summers, An Algebraic Characterization of Vacuum States in Minkowsky Space, Commun. Math. Phys., Vol. 155, 1993, pp. 442-458. Zbl0788.46074MR1231637
  19. [BuSu2] D. Buchholz and S.J. Summers, Geometric modular action and representations of the Poincaré group, in preparation. 
  20. [BuWi] D. Buchholz and E.H. Wichmann, Causal independence and the energy-level density of states in local quantum field theory, Commun. Math. Phys., Vol. 106, 1986, pp. 321-344. Zbl0626.46064MR855315
  21. [Ep] H. Epstein, Some Analytic Properties of Scattering Amplitudes in Quantum Field Theory, in 1965Brandeis Summer Institute, Gordon and Breach, New York, London, Paris, 1966. 
  22. [Fre] K. Fredenhagen, Generalization of the Theory of Superselection Sectors, In: The Algebraic Theory of Superselection Sectors. Introduction and Recent Results, World Scientifique1990, p. 379. MR1147469
  23. [GF] F. Gabbiani and J. Fröhlich, Operator algebras and conformal field theory, Commun. Math. Phys., Vol. 155, 1993, pp. 569-640. Zbl0801.46084MR1231644
  24. [Ha] R. Haag, Local Quantum Physics, Springer verlag, Berlin, Heidelberg, New York, 1992. MR1182152
  25. [HHW] R. Haag, N. Hugenholtz and M. Winnink, On the equilibrium state in quantum statistical mechanics, Commun. Math. Phys., Vol. 5, 1967, pp. 215-236. Zbl0171.47102MR219283
  26. [HL] P.D. Hislop and R. Longo, Modular structure of the local algebra associated with a free massless scalar field theory, Commun. Math. Phys., Vol. 84, 1982, pp. 71-85. Zbl0491.46060MR660540
  27. [Jo] R. Jost, Eine Bemerkung zum CTP Theorem, Helv. Phys. Acta, Vol. 30, 1957, pp. 409-416. Zbl0085.43305MR89720
  28. [Ka] R.V. Kadison, Derivations of operator algebras, Ann. of Math., Vol. 83, 1966, pp. 280-293. Zbl0139.30503MR193527
  29. [KR] R.V. Kadison and J.R. Ringrose, Fundamentals of the Theory of Operator Algebras II, New York: Academic press, 1986. Zbl0601.46054MR859186
  30. [Lo] R. Longo, Algebraic and modular structure of von Neumann algebras in physics, Proc. Symp. Pure Math., Vol. 38, 1982, pp. 551-566. Zbl0504.46050MR679537
  31. [OT] A.I. Oksak and I.T. Todorov, Invalidity of the TCP-Theorem for Infinite-Component Fields, Commun. Math. Phys., Vol. 11, 1968, p. 125. Zbl0162.28802MR239828
  32. [RS] H. Reeh and S. Schlieder, Eine Bemerkung zur Unitäräquivalenz von Lorentzinvarianten Feldem, Nuovo Cimento, Vol. 22, 1961, p. 1051. Zbl0101.22402MR137513
  33. [Sak] S. Sakai, Derivations of W*-algebras, Ann. of Math., Vol. 83, 1966, pp. 273-279. Zbl0139.30601MR193528
  34. [Str] R. Streater, Local Fields with the Wrong Connection Between Spin and Statistics, Commun. Math. Phys., Vol. 5, 1967, pp. 88-96. Zbl0165.58202
  35. [Ta] M. Takesaki, Tomita's Theory of Modular Hilbert Algebras and its applications, Lecture Notes in Mathematics, Vol. 128, Springer verlag, Berlin, Heidelberg, New York, 1970. Zbl0193.42502MR270168
  36. [TMP] I.T. Todorov, M.C. Mintchev and V.B. Petkova, Conformal invariance in quantum field theory, Publ. Scuola Normale Superiore, Pisa1978. Zbl0438.22011MR533358
  37. [To] M. Tomita, Quasi-standard von Neumann algebras, Preprint, 1967. MR284822
  38. [Wie1] H.-W. Wiesbrock, A comment on a recent work of Borchers, Lett. Math. Phys., Vol. 25, 1992, pp. 157-159. Zbl0773.46034MR1182035
  39. [Wie2] H.-W. Wiesbrock, Half-Sided Modular Inclusions of von Neuman Algebras, Preprint, FU Berlin, 1992. MR1244859
  40. [Wie3] H.-W. Wiesbrock, Symmetries and Half-Sided Modular Inclusions of von Neumann Algebras, Lett. Math. Phys., Vol. 28, 1993, pp. 107-114. Zbl0794.46057MR1229893
  41. [Wie4] H.-W. Wiesbrock, Conformal Quantum Field Theory and Half-Sided Modular Inclusions of von Neumann Algebras, Commun. Math. Phys., Vol. 158, 1993, pp. 537-543. Zbl0802.46089MR1255426
  42. [Win] M. Winnink, An Application of C* -Algebras to Quantum Statistical Mechanics of Systems in Equilibrium, Thesis groningen, 1968. 
  43. [Yng] J. Yngvason, A Note on Essential Duality, Lett. Math. Phys., Vol. 31, 1994, pp. 127-141. Zbl0807.47061MR1280391
  44. [Ze] E.C. Zeeman, Causality Implies the Lorentz Group, J. Math. Phys., Vol. 5, 1964, pp. 490-493. Zbl0133.23205MR162587

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.