On the problem of defining a specific theory within the frame of local quantum physics
Annales de l'I.H.P. Physique théorique (1996)
- Volume: 64, Issue: 4, page 385-393
- ISSN: 0246-0211
Access Full Article
topHow to cite
topHaag, Rudolf, and Ojima, Izumi. "On the problem of defining a specific theory within the frame of local quantum physics." Annales de l'I.H.P. Physique théorique 64.4 (1996): 385-393. <http://eudml.org/doc/76723>.
@article{Haag1996,
author = {Haag, Rudolf, Ojima, Izumi},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {local quantum theory; quantum field theory; germs of states; dilation invariant theory; free field theory; Wick square},
language = {eng},
number = {4},
pages = {385-393},
publisher = {Gauthier-Villars},
title = {On the problem of defining a specific theory within the frame of local quantum physics},
url = {http://eudml.org/doc/76723},
volume = {64},
year = {1996},
}
TY - JOUR
AU - Haag, Rudolf
AU - Ojima, Izumi
TI - On the problem of defining a specific theory within the frame of local quantum physics
JO - Annales de l'I.H.P. Physique théorique
PY - 1996
PB - Gauthier-Villars
VL - 64
IS - 4
SP - 385
EP - 393
LA - eng
KW - local quantum theory; quantum field theory; germs of states; dilation invariant theory; free field theory; Wick square
UR - http://eudml.org/doc/76723
ER -
References
top- [1] R. Haag, Local Quantum Physics, Springer-Verlag, Heidelberg, 1992. Zbl0777.46037MR1182152
- [2] J.E. Roberts, private communication around, 1985.
- [3] D. Buchholz and E. Wichmann, Causal independence and the energy level density of states in local field theory, Comm. Math. Phys., 85, 1986, p. 49. Zbl0626.46064MR855315
- [4] D. Buchholz and M. Porrmann, How small is phase space in quantum field theory, Ann. Inst. H. Poincaré, 52, 1990, p. 237. Zbl0719.46044MR1057446
- [5] K. Fredenhagen and J. Hertel, Local algebras of observables and point-like localized fields, Comm. Math. Phys., 80, 1981, p. 555. Zbl0472.46051MR628511
- [6] D. Buchholz and R. Verch, Scaling algebras and renormalization group in algebraic quantum field theory, Rev. Math. Phys., 1995, p. 1195. Zbl0842.46052MR1369742
- [7] D. Buchholz, unpublished notes, 1995.
- [8] K. Fredenhagen and R. Haag, Generally covariant quantum field theory and scaling limits, Commun. Math. Phys., 108, 1987, p. 91. Zbl0626.46063MR872142
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.