On the problem of defining a specific theory within the frame of local quantum physics

Rudolf Haag; Izumi Ojima

Annales de l'I.H.P. Physique théorique (1996)

  • Volume: 64, Issue: 4, page 385-393
  • ISSN: 0246-0211

How to cite

top

Haag, Rudolf, and Ojima, Izumi. "On the problem of defining a specific theory within the frame of local quantum physics." Annales de l'I.H.P. Physique théorique 64.4 (1996): 385-393. <http://eudml.org/doc/76723>.

@article{Haag1996,
author = {Haag, Rudolf, Ojima, Izumi},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {local quantum theory; quantum field theory; germs of states; dilation invariant theory; free field theory; Wick square},
language = {eng},
number = {4},
pages = {385-393},
publisher = {Gauthier-Villars},
title = {On the problem of defining a specific theory within the frame of local quantum physics},
url = {http://eudml.org/doc/76723},
volume = {64},
year = {1996},
}

TY - JOUR
AU - Haag, Rudolf
AU - Ojima, Izumi
TI - On the problem of defining a specific theory within the frame of local quantum physics
JO - Annales de l'I.H.P. Physique théorique
PY - 1996
PB - Gauthier-Villars
VL - 64
IS - 4
SP - 385
EP - 393
LA - eng
KW - local quantum theory; quantum field theory; germs of states; dilation invariant theory; free field theory; Wick square
UR - http://eudml.org/doc/76723
ER -

References

top
  1. [1] R. Haag, Local Quantum Physics, Springer-Verlag, Heidelberg, 1992. Zbl0777.46037MR1182152
  2. [2] J.E. Roberts, private communication around, 1985. 
  3. [3] D. Buchholz and E. Wichmann, Causal independence and the energy level density of states in local field theory, Comm. Math. Phys., 85, 1986, p. 49. Zbl0626.46064MR855315
  4. [4] D. Buchholz and M. Porrmann, How small is phase space in quantum field theory, Ann. Inst. H. Poincaré, 52, 1990, p. 237. Zbl0719.46044MR1057446
  5. [5] K. Fredenhagen and J. Hertel, Local algebras of observables and point-like localized fields, Comm. Math. Phys., 80, 1981, p. 555. Zbl0472.46051MR628511
  6. [6] D. Buchholz and R. Verch, Scaling algebras and renormalization group in algebraic quantum field theory, Rev. Math. Phys., 1995, p. 1195. Zbl0842.46052MR1369742
  7. [7] D. Buchholz, unpublished notes, 1995. 
  8. [8] K. Fredenhagen and R. Haag, Generally covariant quantum field theory and scaling limits, Commun. Math. Phys., 108, 1987, p. 91. Zbl0626.46063MR872142

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.