On the problem of defining a specific theory within the frame of local quantum physics

Rudolf Haag; Izumi Ojima

Annales de l'I.H.P. Physique théorique (1996)

  • Volume: 64, Issue: 4, page 385-393
  • ISSN: 0246-0211

How to cite

top

Haag, Rudolf, and Ojima, Izumi. "On the problem of defining a specific theory within the frame of local quantum physics." Annales de l'I.H.P. Physique théorique 64.4 (1996): 385-393. <http://eudml.org/doc/76723>.

@article{Haag1996,
author = {Haag, Rudolf, Ojima, Izumi},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {local quantum theory; quantum field theory; germs of states; dilation invariant theory; free field theory; Wick square},
language = {eng},
number = {4},
pages = {385-393},
publisher = {Gauthier-Villars},
title = {On the problem of defining a specific theory within the frame of local quantum physics},
url = {http://eudml.org/doc/76723},
volume = {64},
year = {1996},
}

TY - JOUR
AU - Haag, Rudolf
AU - Ojima, Izumi
TI - On the problem of defining a specific theory within the frame of local quantum physics
JO - Annales de l'I.H.P. Physique théorique
PY - 1996
PB - Gauthier-Villars
VL - 64
IS - 4
SP - 385
EP - 393
LA - eng
KW - local quantum theory; quantum field theory; germs of states; dilation invariant theory; free field theory; Wick square
UR - http://eudml.org/doc/76723
ER -

References

top
  1. [1] R. Haag, Local Quantum Physics, Springer-Verlag, Heidelberg, 1992. Zbl0777.46037MR1182152
  2. [2] J.E. Roberts, private communication around, 1985. 
  3. [3] D. Buchholz and E. Wichmann, Causal independence and the energy level density of states in local field theory, Comm. Math. Phys., 85, 1986, p. 49. Zbl0626.46064MR855315
  4. [4] D. Buchholz and M. Porrmann, How small is phase space in quantum field theory, Ann. Inst. H. Poincaré, 52, 1990, p. 237. Zbl0719.46044MR1057446
  5. [5] K. Fredenhagen and J. Hertel, Local algebras of observables and point-like localized fields, Comm. Math. Phys., 80, 1981, p. 555. Zbl0472.46051MR628511
  6. [6] D. Buchholz and R. Verch, Scaling algebras and renormalization group in algebraic quantum field theory, Rev. Math. Phys., 1995, p. 1195. Zbl0842.46052MR1369742
  7. [7] D. Buchholz, unpublished notes, 1995. 
  8. [8] K. Fredenhagen and R. Haag, Generally covariant quantum field theory and scaling limits, Commun. Math. Phys., 108, 1987, p. 91. Zbl0626.46063MR872142

NotesEmbed ?

top

You must be logged in to post comments.