Geometric modular action and transformation groups

Stephen J. Summers

Annales de l'I.H.P. Physique théorique (1996)

  • Volume: 64, Issue: 4, page 409-432
  • ISSN: 0246-0211

How to cite

top

Summers, Stephen J.. "Geometric modular action and transformation groups." Annales de l'I.H.P. Physique théorique 64.4 (1996): 409-432. <http://eudml.org/doc/76725>.

@article{Summers1996,
author = {Summers, Stephen J.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {geometric modular action; transformation groups of partially ordered sets; projective representations; models for space-times; symmetry groups of the space-times; Poincaré group; de Sitter group},
language = {eng},
number = {4},
pages = {409-432},
publisher = {Gauthier-Villars},
title = {Geometric modular action and transformation groups},
url = {http://eudml.org/doc/76725},
volume = {64},
year = {1996},
}

TY - JOUR
AU - Summers, Stephen J.
TI - Geometric modular action and transformation groups
JO - Annales de l'I.H.P. Physique théorique
PY - 1996
PB - Gauthier-Villars
VL - 64
IS - 4
SP - 409
EP - 432
LA - eng
KW - geometric modular action; transformation groups of partially ordered sets; projective representations; models for space-times; symmetry groups of the space-times; Poincaré group; de Sitter group
UR - http://eudml.org/doc/76725
ER -

References

top
  1. [1] A.D. Alexandrov, On Lorentz transformations, Uspehi Mat. Nauk., Vol. 5, 1950, pp. 187. 
  2. [2] H. Araki, Symmetries in theory of local observables and the choice of the net of local algebras, Rev. Math. Phys., Special Issue, 1992, pp. 1-14. Zbl0774.46040MR1199167
  3. [3] U. Bannier, Intrinsic algebraic characterization of space-time structure, Int. J. Theor. Phys., Vol. 33, 1994, pp. 1797-1809. Zbl0832.46066MR1296346
  4. [4] J. Bisognano and E.H. Wichmann, On the duality condition for a hermitian scalar field, J. Math. Phys., Vol. 16, 1975, pp. 985-1007. Zbl0316.46062MR438943
  5. [5] H.-J. Borchers and G.C. Hegerfeldt, The structure of space-time transformations, Commun. Math. Phys., Vol. 28, 1972, pp. 259-266. Zbl0242.53017MR347307
  6. [6] H.-J. Borchers, The PCT-theorem in two-dimensional theories of local observables, Commun. Math. Phys., Vol. 143, 1992, pp. 315-332. Zbl0751.46045MR1145798
  7. [7] O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics I, Berlin, Heidelberg, New York: Springer-Verlag, 1979. Zbl0421.46048MR611508
  8. [8] R. Brunetti, D. Guido and R. Longo, Group cohomology, modular theory and space-time symmetries, Rev. Math. Phys., Vol. 7, 1995, pp. 57-71. Zbl0837.46058MR1310766
  9. [9] D. Buchholz and S.J. Summers, An algebraic characterization of vacuum states in Minkowski space, Commun. Math. Phys., Vol. 155, 1993, pp. 449-458. Zbl0788.46074MR1231637
  10. [10] D. Buchholz, O. Dreyer and S.J. Summers, work in progress. 
  11. [11] K. Fredenhagen, Global observables in local quantum physics, in: Quantum and Non–Commutative Analysis, Amsterdam: Kluwer Academic Publishers, 1993. Zbl0847.46043MR1276280
  12. [12] K. Fredenhagen, Quantum field theories on nontrivial spacetimes, in: Mathematical Physics Towards the 21st Century, ed. by R. N. Sen and A. Gersten, Beer-Sheva: Ben-Gurion University Negev Press, 1993. 
  13. [13] D. Guido, Modular covariance, PCT, Spin and Statistics, Ann. Inst. Henri Poincaré, Vol. 63, 1995, pp. 383-398. Zbl0843.46055MR1367143
  14. [14] D. Guido and R. Longo, An algebraic spin and statistics theorem, I, to appear in Commun. Math. Phys. MR1354258
  15. [15] P.D. Hislop and R. Longo, Modular structure of the local algebras associated with the free massless scalar field theory, Commun. Math. Phys., Vol. 84, 1982, pp. 71-85. Zbl0491.46060MR660540
  16. [16] M. Keyl, Causal spaces, causal complements and their relations to quantum field theory, to appear in Rev. Math. Phys. Zbl0974.81038MR1383579
  17. [17] B. Kuckert, A new approach to spin & statistics, Lett. Math. Phys., Vol. 35, 1995, pp. 319-331. Zbl0836.46073
  18. [18] J.A. Lester, Separation-preserving transformations of De Sitter spacetime, Abh. Math. Sem. Univ. Hamburg, Vol. 53, 1983, pp. 217-224. Zbl0499.53027MR732817
  19. [19] G. Mackey, Les ensembles Boréliens et les extensions des groupes, J. Math. Pures Appl., Vol. 36, 1957, pp. 171-178. Zbl0080.02303MR89998
  20. [20] C.C. Moore, Group extensions and cohomology for locally compact groups, IV, Trans. Amer. Math. Soc., Vol. 221, 1976, pp. 35-58. Zbl0366.22006MR414776
  21. [21] J.E. Roberts and G. Roepstorff, Some basic concepts of algebraic quantum theory, Commun. Math. Phys., Vol. 11, 1969, pp. 321-338. Zbl0167.55806MR245275
  22. [22] H.-W. Wiesbrock, A comment on a recent work of Borchers, Lett. Math. Phys., Vol. 25, 1992, pp. 157-159. Zbl0773.46034MR1182035
  23. [23] H.-W. Wiesbrock, Conformal quantum field theory and half-sided modular inclusions of von Neumann algebras, Commun. Math. Phys., Vol. 158, 1993, pp. 537-543. Zbl0802.46089MR1255426
  24. [24] M. Wollenberg, On the relation between a conformal structure in spacetime and nets of local algebras of observables, Lett. Math. Phys., Vol. 31, 1994, pp. 195-203. Zbl0812.46073MR1280856
  25. [25] E.C. Zeeman, Causality implies the Lorentz group, J. Math. Phys., Vol. 5, 1964, pp. 490-493. Zbl0133.23205MR162587
  26. [26] R.J. Zimmer, Ergodic Theory and Semisimple Groups, Boston, Basel and Stuttgart: Birkhäuser, 1984. Zbl0571.58015MR776417

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.