Geometric modular action and transformation groups
Annales de l'I.H.P. Physique théorique (1996)
- Volume: 64, Issue: 4, page 409-432
- ISSN: 0246-0211
Access Full Article
topHow to cite
topSummers, Stephen J.. "Geometric modular action and transformation groups." Annales de l'I.H.P. Physique théorique 64.4 (1996): 409-432. <http://eudml.org/doc/76725>.
@article{Summers1996,
author = {Summers, Stephen J.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {geometric modular action; transformation groups of partially ordered sets; projective representations; models for space-times; symmetry groups of the space-times; Poincaré group; de Sitter group},
language = {eng},
number = {4},
pages = {409-432},
publisher = {Gauthier-Villars},
title = {Geometric modular action and transformation groups},
url = {http://eudml.org/doc/76725},
volume = {64},
year = {1996},
}
TY - JOUR
AU - Summers, Stephen J.
TI - Geometric modular action and transformation groups
JO - Annales de l'I.H.P. Physique théorique
PY - 1996
PB - Gauthier-Villars
VL - 64
IS - 4
SP - 409
EP - 432
LA - eng
KW - geometric modular action; transformation groups of partially ordered sets; projective representations; models for space-times; symmetry groups of the space-times; Poincaré group; de Sitter group
UR - http://eudml.org/doc/76725
ER -
References
top- [1] A.D. Alexandrov, On Lorentz transformations, Uspehi Mat. Nauk., Vol. 5, 1950, pp. 187.
- [2] H. Araki, Symmetries in theory of local observables and the choice of the net of local algebras, Rev. Math. Phys., Special Issue, 1992, pp. 1-14. Zbl0774.46040MR1199167
- [3] U. Bannier, Intrinsic algebraic characterization of space-time structure, Int. J. Theor. Phys., Vol. 33, 1994, pp. 1797-1809. Zbl0832.46066MR1296346
- [4] J. Bisognano and E.H. Wichmann, On the duality condition for a hermitian scalar field, J. Math. Phys., Vol. 16, 1975, pp. 985-1007. Zbl0316.46062MR438943
- [5] H.-J. Borchers and G.C. Hegerfeldt, The structure of space-time transformations, Commun. Math. Phys., Vol. 28, 1972, pp. 259-266. Zbl0242.53017MR347307
- [6] H.-J. Borchers, The PCT-theorem in two-dimensional theories of local observables, Commun. Math. Phys., Vol. 143, 1992, pp. 315-332. Zbl0751.46045MR1145798
- [7] O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics I, Berlin, Heidelberg, New York: Springer-Verlag, 1979. Zbl0421.46048MR611508
- [8] R. Brunetti, D. Guido and R. Longo, Group cohomology, modular theory and space-time symmetries, Rev. Math. Phys., Vol. 7, 1995, pp. 57-71. Zbl0837.46058MR1310766
- [9] D. Buchholz and S.J. Summers, An algebraic characterization of vacuum states in Minkowski space, Commun. Math. Phys., Vol. 155, 1993, pp. 449-458. Zbl0788.46074MR1231637
- [10] D. Buchholz, O. Dreyer and S.J. Summers, work in progress.
- [11] K. Fredenhagen, Global observables in local quantum physics, in: Quantum and Non–Commutative Analysis, Amsterdam: Kluwer Academic Publishers, 1993. Zbl0847.46043MR1276280
- [12] K. Fredenhagen, Quantum field theories on nontrivial spacetimes, in: Mathematical Physics Towards the 21st Century, ed. by R. N. Sen and A. Gersten, Beer-Sheva: Ben-Gurion University Negev Press, 1993.
- [13] D. Guido, Modular covariance, PCT, Spin and Statistics, Ann. Inst. Henri Poincaré, Vol. 63, 1995, pp. 383-398. Zbl0843.46055MR1367143
- [14] D. Guido and R. Longo, An algebraic spin and statistics theorem, I, to appear in Commun. Math. Phys. MR1354258
- [15] P.D. Hislop and R. Longo, Modular structure of the local algebras associated with the free massless scalar field theory, Commun. Math. Phys., Vol. 84, 1982, pp. 71-85. Zbl0491.46060MR660540
- [16] M. Keyl, Causal spaces, causal complements and their relations to quantum field theory, to appear in Rev. Math. Phys. Zbl0974.81038MR1383579
- [17] B. Kuckert, A new approach to spin & statistics, Lett. Math. Phys., Vol. 35, 1995, pp. 319-331. Zbl0836.46073
- [18] J.A. Lester, Separation-preserving transformations of De Sitter spacetime, Abh. Math. Sem. Univ. Hamburg, Vol. 53, 1983, pp. 217-224. Zbl0499.53027MR732817
- [19] G. Mackey, Les ensembles Boréliens et les extensions des groupes, J. Math. Pures Appl., Vol. 36, 1957, pp. 171-178. Zbl0080.02303MR89998
- [20] C.C. Moore, Group extensions and cohomology for locally compact groups, IV, Trans. Amer. Math. Soc., Vol. 221, 1976, pp. 35-58. Zbl0366.22006MR414776
- [21] J.E. Roberts and G. Roepstorff, Some basic concepts of algebraic quantum theory, Commun. Math. Phys., Vol. 11, 1969, pp. 321-338. Zbl0167.55806MR245275
- [22] H.-W. Wiesbrock, A comment on a recent work of Borchers, Lett. Math. Phys., Vol. 25, 1992, pp. 157-159. Zbl0773.46034MR1182035
- [23] H.-W. Wiesbrock, Conformal quantum field theory and half-sided modular inclusions of von Neumann algebras, Commun. Math. Phys., Vol. 158, 1993, pp. 537-543. Zbl0802.46089MR1255426
- [24] M. Wollenberg, On the relation between a conformal structure in spacetime and nets of local algebras of observables, Lett. Math. Phys., Vol. 31, 1994, pp. 195-203. Zbl0812.46073MR1280856
- [25] E.C. Zeeman, Causality implies the Lorentz group, J. Math. Phys., Vol. 5, 1964, pp. 490-493. Zbl0133.23205MR162587
- [26] R.J. Zimmer, Ergodic Theory and Semisimple Groups, Boston, Basel and Stuttgart: Birkhäuser, 1984. Zbl0571.58015MR776417
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.