Scattering poles for connected sums of euclidean space and Zoll manifolds

L. S. Farhy; V. V. Tsanov

Annales de l'I.H.P. Physique théorique (1996)

  • Volume: 65, Issue: 2, page 163-174
  • ISSN: 0246-0211

How to cite

top

Farhy, L. S., and Tsanov, V. V.. "Scattering poles for connected sums of euclidean space and Zoll manifolds." Annales de l'I.H.P. Physique théorique 65.2 (1996): 163-174. <http://eudml.org/doc/76739>.

@article{Farhy1996,
author = {Farhy, L. S., Tsanov, V. V.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {scattering poles; number of resonances; Euclidean space; Zoll manifold},
language = {eng},
number = {2},
pages = {163-174},
publisher = {Gauthier-Villars},
title = {Scattering poles for connected sums of euclidean space and Zoll manifolds},
url = {http://eudml.org/doc/76739},
volume = {65},
year = {1996},
}

TY - JOUR
AU - Farhy, L. S.
AU - Tsanov, V. V.
TI - Scattering poles for connected sums of euclidean space and Zoll manifolds
JO - Annales de l'I.H.P. Physique théorique
PY - 1996
PB - Gauthier-Villars
VL - 65
IS - 2
SP - 163
EP - 174
LA - eng
KW - scattering poles; number of resonances; Euclidean space; Zoll manifold
UR - http://eudml.org/doc/76739
ER -

References

top
  1. [1] M. Berger, P. Gauduchon and E. Mazet, Le spectre d'une variété Riemannienne, Lecture Notes in Math., Vol. 194, Berlin, 1971. Zbl0223.53034
  2. [2] A.L. Besse, Manifolds all of whose geodesics are closed, Springer-Verlag, 1978. Zbl0387.53010MR496885
  3. [3] J. Duistermaat and V. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., Vol. 29, 1975, pp. 39-79. Zbl0307.35071MR405514
  4. [4] L.S. Farhy, Distribution near the real axis of scattering poles generated by a non-hyperbolic periodic ray, Ann. Inst. H. Poincaré, Vol. 60, 1994, pp. 291-302. Zbl0808.35091MR1281648
  5. [5] L.S. Farhy, Lower bounds on the number of scattering poles under lines parallel to the real axis, Comm. P.D.E., Vol. 20, 1995, pp. 729-740. Zbl0822.35105MR1326904
  6. [6] L.S. Farhy, Trapping obstacles with non-hyperbolic periodic ray, asymptotic behaviour of solutions, Math. Z., Vol. 217, 1994, pp. 143-165. Zbl0808.35067MR1292178
  7. [7] C. Gérard, Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes, Bull. S.M.F., T.116, Mémoire n° 31, 1988. Zbl0654.35081MR998698
  8. [8] L. Guillopé, Majorations à la Weyl pour le nombre de résonances à une perturbation compacte du laplacien euclidien, preprint. 
  9. [9] L. Hörmander, The analysis of linear partial differential operators, Springer-Verlag, 1983-1985. Zbl0521.35002
  10. [10] M. Ikawa, On the poles of the scattering matrix for two strictly convex obstacles, J. Math. Kyoto Univ., Vol. 23, 1983, pp. 127-194. Zbl0561.35060MR692733
  11. [11] M. Ikawa, Trapping obstacles with a sequence of poles of the scattering matrix converging to the real axis, Osaka J. Math., Vol. 22, 1985, pp. 657-689. Zbl0617.35102MR815439
  12. [12] P. Lax and R.S. Phillips, Scattering theory, Academic Press, New York, 1967. Zbl0186.16301MR1037774
  13. [13] P. Lax and R.S. Phillips, Decaying modes for the wave equation in the exterior of an obstacle, Comm. Pure Appl. Math., Vol. 22, 1969, pp. 737-787. Zbl0181.38201MR254432
  14. [14] R.B. Melrose, Scattering theory and the trace of the wave group, J. of Funct. Anal., Vol. 45, 1982, pp. 29-40. Zbl0525.47007MR645644
  15. [15] R.B. Melrose, Polynomial bounds on the number of scattering poles, J. of Funct. Anal., Vol. 53, 1983, pp. 287-303. Zbl0535.35067MR724031
  16. [16] V. Petkov and G. Vodev, Upper bounds on the number of scattering poles and the Lax-Phillips conjecture, Asympt. Analysis, Vol. 7, 1993, pp. 97-104. Zbl0801.35099MR1225440
  17. [17] J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles, J. of Amer. Math. Soc., Vol. 4, 1991, pp. 729-769. Zbl0752.35046MR1115789
  18. [18] J. Sjöstrand and M. Zworski, Lower bounds on the number of scattering poles, Comm. P.D.E., Vol. 18, 1993, pp. 847-857. Zbl0784.35070MR1218521
  19. [19] J. Sjöstrand and M. Zworski, Lower bounds on the number of scattering poles II, J. Funct. Anal., Vol. 123, 1994, pp. 336-367. Zbl0823.35137MR1283032
  20. [20] G. Vodev, Sharp polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian in Rn, Math. Ann., Vol. 291, 1991, pp. 39-49. Zbl0754.35105MR1125006
  21. [21] G. Vodev, Sharp bounds on the number of scattering poles for perturbations of the Laplacian, Comm. Math. Phys., Vol. 146, 1992, pp. 205-216. Zbl0766.35032MR1163673
  22. [22] A. Weinstein, Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J., Vol. 44, 1977, pp. 883-892. Zbl0385.58013MR482878
  23. [23] M. Zworski, Counting scattering poles, Spectral and Scattering Theory, M. Ikawa ed., Marcel Dekker, 1995, pp. 301-331. Zbl0823.35139MR1291649

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.