Distribution near the real axis of scattering poles generated by a non-hyperbolic periodic ray
Annales de l'I.H.P. Physique théorique (1994)
- Volume: 60, Issue: 3, page 291-302
- ISSN: 0246-0211
Access Full Article
topHow to cite
topReferences
top- [1] C. Bardos, J.C. Guillot, J. Ralston, La relation de Poisson pour l'équation des ondes dans un ouvert non borné, Comm. Part. Diff. Eq., Vol. 7, 1982, pp. 905-958. Zbl0496.35067MR668585
- [2] C. Gérard, Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes, Bull. S.M.F., T 116, Mémoire n° 31, 1988. Zbl0654.35081MR998698
- [3] M. Ikawa, On the poles of the scattering matrix for two strictly convex obstacles, J. Math. Kyoto Univ., Vol. 23, 1983, pp. 127-194. Zbl0561.35060MR692733
- [4] M. Ikawa, Trapping obstacles with a sequence of poles of the scattering matrix converging to the real axis, Osaka J. Math., Vol. 22, 1985, pp. 657-689. Zbl0617.35102MR815439
- [5] M. Ikawa, preprint.
- [6] P.D. Lax, R.S. Phillips, Scattering theory, Academic Press, New York, 1967. Zbl0186.16301MR217440
- [7] R.B. Melrose, Scattering theory and the trace of the wave group, J. of Funct. Anal., Vol. 45, 1982, pp. 29-40. Zbl0525.47007MR645644
- [8] J. Sjöstrand, M. Zworski, Lower bounds on the number of scattering poles, Comm. P.D.E., Vol. 18, 1993, pp. 847-854. Zbl0784.35070MR1218521
Citations in EuDML Documents
top- L. S. Farhy, V. V. Tsanov, Scattering poles for connected sums of euclidean space and Zoll manifolds
- Vesselin Petkov, Latchezar Stoyanov, Singularities of the scattering kernel for trapping obstacles
- V. Petkov, Sur la conjecture de Lax et Phillips pour un nombre fini d'obstacles strictement convexes