Minimizing Oseen-Frank energy for nematic liquid crystals : algorithms and numerical results
Annales de l'I.H.P. Physique théorique (1997)
- Volume: 66, Issue: 4, page 411-447
- ISSN: 0246-0211
Access Full Article
topHow to cite
topAlouges, F., and Ghidaglia, J. M.. "Minimizing Oseen-Frank energy for nematic liquid crystals : algorithms and numerical results." Annales de l'I.H.P. Physique théorique 66.4 (1997): 411-447. <http://eudml.org/doc/76758>.
@article{Alouges1997,
author = {Alouges, F., Ghidaglia, J. M.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {nonconvex optimisation; conjugate gradients; equivalent configurations},
language = {eng},
number = {4},
pages = {411-447},
publisher = {Gauthier-Villars},
title = {Minimizing Oseen-Frank energy for nematic liquid crystals : algorithms and numerical results},
url = {http://eudml.org/doc/76758},
volume = {66},
year = {1997},
}
TY - JOUR
AU - Alouges, F.
AU - Ghidaglia, J. M.
TI - Minimizing Oseen-Frank energy for nematic liquid crystals : algorithms and numerical results
JO - Annales de l'I.H.P. Physique théorique
PY - 1997
PB - Gauthier-Villars
VL - 66
IS - 4
SP - 411
EP - 447
LA - eng
KW - nonconvex optimisation; conjugate gradients; equivalent configurations
UR - http://eudml.org/doc/76758
ER -
References
top- [1] F. Alduges,, Un algorithme qui décroît sûrement l'énergie des cristaux liquides, thèse de doctorat, Université d'Orsay, 1990.
- [2] F. Alouges, A new algorithm for computing liquid crystal stable configurations: The harmonic mapping case, to appear in SIAM Journal on Numer. Anal. and prépublication du CMLA # 9515, Cachan, 1995. MR1472192
- [3] F. Alouges and B.D. Coleman, Computation of stable equilibrium states of nematic phases between cylinders, in preparation.
- [4] F. Bethuel, H. Brezis and J.-M. Coron, Relaxed energies for harmonie maps, Variational methods, H. Berestycki, J.-M. Coron and I. Ekeland Eds, Birkhäuser, Boston, Basel, Berlin, 1990, pp. 37-52. Zbl0793.58011MR1205144
- [5] H. Brezis, J.M. Coron and E.H. Lieb, Harmonic maps with defects, Comm. Math. Phys., Vol. 107, 1986, pp. 649-705. Zbl0608.58016MR868739
- [6] R. Cohen and M. Taylor, Weak stability of the map x/|x| for liquid crystal, Comm. Partial Differential Equations, Vol. 15, 1990, pp. 675-692. Zbl0716.49001MR1070842
- [7] R. Cohen, Perturbation techniques for liquid crystal functionals, lectures given at the Ecole Normale Supérieure de Cachan.
- [8] R. Cohen, Fractional step methods for liquid crystals problems, PhD thesis, University of Minnesota, Minneapolis, 1988.
- [9] R. Cohen and M. Luskin, Field-induced instabilities in Nematic liquid crystals, in Nematics: Mathematical and physical aspects, 1991, pp. 261-278. Zbl0727.76015MR1178100
- [10] R. Cohen, R. Hardt, D. Kinderlehrer, S.Y. Lin and M. Luskin, Minimum energy configurations for liquid crystals: computational results, in Theory and application of liquid crystals, IMA5, Springer-Verlag, New-York, 1987, pp. 99-122. MR900831
- [11] J.-M. Coron, J.-M. Ghidaglia and F. Hélein Eds, Nematics: Mathematical and physical aspects, Kluwer, Dordrecht, 1991. Zbl0722.00043MR1178081
- [12] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc., Vol. 10, 1978, pp. 1-68. Zbl0401.58003MR495450
- [13] J.L. Ericksen, Liquid crystals with variable degree of orientation, IMA preprint # 559, Minneapolis, 1989. MR1079183
- [14] P.-G. de Gennes, The physics of liquid crystals, Clarendon Press, Oxford, 1974,
- see also P.-G. de Gennes and J. Prost, The physics of liquid crystals, 2nd edition, International series of monographs (Physics)83, Oxford Sci. Pub., Oxford, 1993.
- [15] M. Giaquinta, Multiple integrals in the calculus ofvariations and nonlinear elliptic systems, Annals of mathematics studies, Princeton University Press, Princeton, 1983. Zbl0516.49003MR717034
- [16] K. Godev, Mathematical models of liquid crystals with variable degree of orientation, PhD thesis, Pennsylvania State University, 1994.
- [17] R. Gulliver, Harmonic mappings, symmetry and computer graphics, preprint CMA-R- 52-88. MR1081330
- [18] R. Gulliver, Fiber evolution in the Heat flow of harmonie maps, in Nematics: Mathematical and physical aspects, J.-M. Coron et al. eds (1991). Zbl0738.58013MR1178092
- [19] R. Hardt, D. Kinderlehrer and F.-H. Lin, Existence and partial regularity of static liquid crystal configurations, Comm. Math. Phys., Vol. 105, 1986, pp. 547-570. Zbl0611.35077MR852090
- [20] R. Hardt, D. Kinderlehrer and F.-H. Lin, Stable defects of minimizers of constrained variational principles, Ann. Inst. Henri Poincaré, Vol. 5, 1988, pp. 297-322. Zbl0657.49018MR963102
- [21] R. Hardt, D. Kinderlehrer and M. Luskin, Remarks about the mathematical theory of liquid crystals, Proc. CIRM, Trento, IMA, preprint 276. Zbl0696.49053MR974607
- [22] R. Hardt and F.-H. Lin, A remark on H1 mappings, Manuscripta Math., Vol. 56, 1986, pp. 1-10. Zbl0618.58015MR846982
- [23] R. Hardt and D. Kinderlehrer, Mathematical questions of liquid crystal theory, in Theory and applications of liquid crystals, IMA Vol. 5, Springer-Verlag, New-York, 1987, pp. 161-166. Zbl0704.76005MR900833
- [24] F. Hélein, Minima de la fonctionnelle énergie libre des cristaux liquides, C. R. Acad. Sci. Paris, Série I, t. 305, 1987, pp. 565-568. Zbl0641.49003MR916336
- [25] D. Kinderlehrer and B. Ou, Quadratic variation of liquid crystal energy at x/|x|, Proc. R. Soc. London A, Vol. 437, 1992, pp. 475-487. Zbl0761.49012MR1163558
- [26] D. Kinderlehrer, B. Ou and N. Walkington, The elementary defects of the Oseen-Frank energy for a liquid crystal, C. R. Acad. Sci. Paris, Série I, Vol. 316, 1993, pp. 465-470. Zbl0784.35085MR1209268
- [27] M. Kléman, Points, Lines and Walls, John Wiley, 1983. MR734901
- [28] F.-H. Lin, On nematic liquid crystals with variable degree of orientation, C. P. A. M., Vol. XLIV, 1991, pp. 453-468. Zbl0733.49005MR1100811
- [29] F.-H. Lin, Une remarque sur l'application x/|x|, C. R. Acad. Sci. Paris, Série I, t. 305, 1987, pp. 529-531. Zbl0652.58022
- [30] S.-Y. Lin, Numerical analysis for liquid crystal problems, PhD thesis, University of Minnesota, Minneapolis, 1987.
- [31] J.-L. Lions, Equations différentielles opérationnelles et problèmes aux limites, Springer Verlag, 1961. Zbl0098.31101MR153974
- [32] L. Quivy, A minimization algorithm for a relaxed energy connected with the theory of liquid crystal, to appear in Mathematical models and methods in applied sciences, and Prépublication du CMLA # 9420, Cachan, 1994. Zbl0844.58022MR1316191
- [33] T. Riviere, Everywhere discontinuous harmonic maps, Prépublication du CMLA # 9302, Cachan, 1993. See also C. R. Acad. Sci. Paris, Série I, t. 314, 1992, pp. 719-723. Zbl0780.49030MR1163864
- [34] R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Diff. Geom., Vol. 17, 1982, pp. 307-335. Zbl0521.58021MR664498
- [35] E. Virga, Variational Theories for liquid crystals, Chapman & Hall London, New York, 1994. Zbl0814.49002
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.