Minimizing Oseen-Frank energy for nematic liquid crystals : algorithms and numerical results

F. Alouges; J. M. Ghidaglia

Annales de l'I.H.P. Physique théorique (1997)

  • Volume: 66, Issue: 4, page 411-447
  • ISSN: 0246-0211

How to cite

top

Alouges, F., and Ghidaglia, J. M.. "Minimizing Oseen-Frank energy for nematic liquid crystals : algorithms and numerical results." Annales de l'I.H.P. Physique théorique 66.4 (1997): 411-447. <http://eudml.org/doc/76758>.

@article{Alouges1997,
author = {Alouges, F., Ghidaglia, J. M.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {nonconvex optimisation; conjugate gradients; equivalent configurations},
language = {eng},
number = {4},
pages = {411-447},
publisher = {Gauthier-Villars},
title = {Minimizing Oseen-Frank energy for nematic liquid crystals : algorithms and numerical results},
url = {http://eudml.org/doc/76758},
volume = {66},
year = {1997},
}

TY - JOUR
AU - Alouges, F.
AU - Ghidaglia, J. M.
TI - Minimizing Oseen-Frank energy for nematic liquid crystals : algorithms and numerical results
JO - Annales de l'I.H.P. Physique théorique
PY - 1997
PB - Gauthier-Villars
VL - 66
IS - 4
SP - 411
EP - 447
LA - eng
KW - nonconvex optimisation; conjugate gradients; equivalent configurations
UR - http://eudml.org/doc/76758
ER -

References

top
  1. [1] F. Alduges,, Un algorithme qui décroît sûrement l'énergie des cristaux liquides, thèse de doctorat, Université d'Orsay, 1990. 
  2. [2] F. Alouges, A new algorithm for computing liquid crystal stable configurations: The harmonic mapping case, to appear in SIAM Journal on Numer. Anal. and prépublication du CMLA # 9515, Cachan, 1995. MR1472192
  3. [3] F. Alouges and B.D. Coleman, Computation of stable equilibrium states of nematic phases between cylinders, in preparation. 
  4. [4] F. Bethuel, H. Brezis and J.-M. Coron, Relaxed energies for harmonie maps, Variational methods, H. Berestycki, J.-M. Coron and I. Ekeland Eds, Birkhäuser, Boston, Basel, Berlin, 1990, pp. 37-52. Zbl0793.58011MR1205144
  5. [5] H. Brezis, J.M. Coron and E.H. Lieb, Harmonic maps with defects, Comm. Math. Phys., Vol. 107, 1986, pp. 649-705. Zbl0608.58016MR868739
  6. [6] R. Cohen and M. Taylor, Weak stability of the map x/|x| for liquid crystal, Comm. Partial Differential Equations, Vol. 15, 1990, pp. 675-692. Zbl0716.49001MR1070842
  7. [7] R. Cohen, Perturbation techniques for liquid crystal functionals, lectures given at the Ecole Normale Supérieure de Cachan. 
  8. [8] R. Cohen, Fractional step methods for liquid crystals problems, PhD thesis, University of Minnesota, Minneapolis, 1988. 
  9. [9] R. Cohen and M. Luskin, Field-induced instabilities in Nematic liquid crystals, in Nematics: Mathematical and physical aspects, 1991, pp. 261-278. Zbl0727.76015MR1178100
  10. [10] R. Cohen, R. Hardt, D. Kinderlehrer, S.Y. Lin and M. Luskin, Minimum energy configurations for liquid crystals: computational results, in Theory and application of liquid crystals, IMA5, Springer-Verlag, New-York, 1987, pp. 99-122. MR900831
  11. [11] J.-M. Coron, J.-M. Ghidaglia and F. Hélein Eds, Nematics: Mathematical and physical aspects, Kluwer, Dordrecht, 1991. Zbl0722.00043MR1178081
  12. [12] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc., Vol. 10, 1978, pp. 1-68. Zbl0401.58003MR495450
  13. [13] J.L. Ericksen, Liquid crystals with variable degree of orientation, IMA preprint # 559, Minneapolis, 1989. MR1079183
  14. [14] P.-G. de Gennes, The physics of liquid crystals, Clarendon Press, Oxford, 1974, 
  15. see also P.-G. de Gennes and J. Prost, The physics of liquid crystals, 2nd edition, International series of monographs (Physics)83, Oxford Sci. Pub., Oxford, 1993. 
  16. [15] M. Giaquinta, Multiple integrals in the calculus ofvariations and nonlinear elliptic systems, Annals of mathematics studies, Princeton University Press, Princeton, 1983. Zbl0516.49003MR717034
  17. [16] K. Godev, Mathematical models of liquid crystals with variable degree of orientation, PhD thesis, Pennsylvania State University, 1994. 
  18. [17] R. Gulliver, Harmonic mappings, symmetry and computer graphics, preprint CMA-R- 52-88. MR1081330
  19. [18] R. Gulliver, Fiber evolution in the Heat flow of harmonie maps, in Nematics: Mathematical and physical aspects, J.-M. Coron et al. eds (1991). Zbl0738.58013MR1178092
  20. [19] R. Hardt, D. Kinderlehrer and F.-H. Lin, Existence and partial regularity of static liquid crystal configurations, Comm. Math. Phys., Vol. 105, 1986, pp. 547-570. Zbl0611.35077MR852090
  21. [20] R. Hardt, D. Kinderlehrer and F.-H. Lin, Stable defects of minimizers of constrained variational principles, Ann. Inst. Henri Poincaré, Vol. 5, 1988, pp. 297-322. Zbl0657.49018MR963102
  22. [21] R. Hardt, D. Kinderlehrer and M. Luskin, Remarks about the mathematical theory of liquid crystals, Proc. CIRM, Trento, IMA, preprint 276. Zbl0696.49053MR974607
  23. [22] R. Hardt and F.-H. Lin, A remark on H1 mappings, Manuscripta Math., Vol. 56, 1986, pp. 1-10. Zbl0618.58015MR846982
  24. [23] R. Hardt and D. Kinderlehrer, Mathematical questions of liquid crystal theory, in Theory and applications of liquid crystals, IMA Vol. 5, Springer-Verlag, New-York, 1987, pp. 161-166. Zbl0704.76005MR900833
  25. [24] F. Hélein, Minima de la fonctionnelle énergie libre des cristaux liquides, C. R. Acad. Sci. Paris, Série I, t. 305, 1987, pp. 565-568. Zbl0641.49003MR916336
  26. [25] D. Kinderlehrer and B. Ou, Quadratic variation of liquid crystal energy at x/|x|, Proc. R. Soc. London A, Vol. 437, 1992, pp. 475-487. Zbl0761.49012MR1163558
  27. [26] D. Kinderlehrer, B. Ou and N. Walkington, The elementary defects of the Oseen-Frank energy for a liquid crystal, C. R. Acad. Sci. Paris, Série I, Vol. 316, 1993, pp. 465-470. Zbl0784.35085MR1209268
  28. [27] M. Kléman, Points, Lines and Walls, John Wiley, 1983. MR734901
  29. [28] F.-H. Lin, On nematic liquid crystals with variable degree of orientation, C. P. A. M., Vol. XLIV, 1991, pp. 453-468. Zbl0733.49005MR1100811
  30. [29] F.-H. Lin, Une remarque sur l'application x/|x|, C. R. Acad. Sci. Paris, Série I, t. 305, 1987, pp. 529-531. Zbl0652.58022
  31. [30] S.-Y. Lin, Numerical analysis for liquid crystal problems, PhD thesis, University of Minnesota, Minneapolis, 1987. 
  32. [31] J.-L. Lions, Equations différentielles opérationnelles et problèmes aux limites, Springer Verlag, 1961. Zbl0098.31101MR153974
  33. [32] L. Quivy, A minimization algorithm for a relaxed energy connected with the theory of liquid crystal, to appear in Mathematical models and methods in applied sciences, and Prépublication du CMLA # 9420, Cachan, 1994. Zbl0844.58022MR1316191
  34. [33] T. Riviere, Everywhere discontinuous harmonic maps, Prépublication du CMLA # 9302, Cachan, 1993. See also C. R. Acad. Sci. Paris, Série I, t. 314, 1992, pp. 719-723. Zbl0780.49030MR1163864
  35. [34] R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Diff. Geom., Vol. 17, 1982, pp. 307-335. Zbl0521.58021MR664498
  36. [35] E. Virga, Variational Theories for liquid crystals, Chapman & Hall London, New York, 1994. Zbl0814.49002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.