Existence of Rayleigh resonances exponentially close to the real axis

G. Vodev

Annales de l'I.H.P. Physique théorique (1997)

  • Volume: 67, Issue: 1, page 41-57
  • ISSN: 0246-0211

How to cite

top

Vodev, G.. "Existence of Rayleigh resonances exponentially close to the real axis." Annales de l'I.H.P. Physique théorique 67.1 (1997): 41-57. <http://eudml.org/doc/76761>.

@article{Vodev1997,
author = {Vodev, G.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Neumann problem; elasticity operator; meromorphic continuation of the resolvent},
language = {eng},
number = {1},
pages = {41-57},
publisher = {Gauthier-Villars},
title = {Existence of Rayleigh resonances exponentially close to the real axis},
url = {http://eudml.org/doc/76761},
volume = {67},
year = {1997},
}

TY - JOUR
AU - Vodev, G.
TI - Existence of Rayleigh resonances exponentially close to the real axis
JO - Annales de l'I.H.P. Physique théorique
PY - 1997
PB - Gauthier-Villars
VL - 67
IS - 1
SP - 41
EP - 57
LA - eng
KW - Neumann problem; elasticity operator; meromorphic continuation of the resolvent
UR - http://eudml.org/doc/76761
ER -

References

top
  1. [1] M. Kawashita, On the local-energy decay property for the elastic wave equation with the Neumann boundary conditions, Duke Math. J., Vol. 67, 1992, pp. 333-351. Zbl0795.35061MR1177309
  2. [2] M. Kawashita, On a region free from the poles of the resolvent and decay rate of the local energy for the elastic wave equation, Indiana Univ. Math. J., Vol. 43, 1994, pp. 1013-1043. Zbl0832.35088MR1305958
  3. [3] J. Sjöstrand, Singularités analytiques microlocales, Astérisque, Vol. 95, 1982. Zbl0524.35007MR699623
  4. [4] J. Sjöstrand and G. Vodev, Asymptotics of the number of Rayleigh resonances, Math. Ann., to appear. Zbl0890.35098MR1474193
  5. [5] P. Stefanov and G. Vodev, Distribution of resonances for the Neumann problem in linear elasticity outside a ball, Ann. Inst. H.Poincaré (Physique Théorique), Vol. 60, 1994, pp. 303-321. Zbl0805.73016MR1281649
  6. [6] P. Stefanov and G. Vodev, Distribution of resonances for the Neumann problem in linear elasticity outside a strictly convex body, Duke Math. J., Vol. 78, 1995, pp. 677-714. Zbl0846.35139MR1334206
  7. [7] P. Stefanov and G. Vodev, Neumann resonances in linear elasticity for an arbitrary body, Commun. Math. Phys., Vol. 176, 1996, pp. 645-659. Zbl0851.35032MR1376435
  8. [8] M. Taylor, Rayleigh waves in linear elasticity as a propagation of singularities phenomenon, in Proc. Conf. on P.D.E. and Geometry, Marcel Dekker, New York, 1979, pp. 273-291. Zbl0432.73021MR535598
  9. [9] G. Vodev, Sharp bounds on the number of scattering poles for perturbations of the Laplacian, Commun. Math. Phys., Vol. 146, 1992, pp. 205-216. Zbl0766.35032MR1163673
  10. [10] H. Walker, Some remarks on the local energy decay of solutions of the initial-boundary value problem for the wave equation in unbounded domains, J. Diff. Equations, Vol. 23, 1977, pp. 459-471. Zbl0337.35046MR427797
  11. [11] K. Yamamoto, Singularities of solutions to the boundary value problems for elastic and Maxwell's equations, Japan J. Math., Vol. 14, 1988, pp. 119-163. Zbl0669.73017MR945621

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.