On quantum twist maps and spectral properties of Floquet operators

Gunther Karner

Annales de l'I.H.P. Physique théorique (1998)

  • Volume: 68, Issue: 2, page 139-157
  • ISSN: 0246-0211

How to cite


Karner, Gunther. "On quantum twist maps and spectral properties of Floquet operators." Annales de l'I.H.P. Physique théorique 68.2 (1998): 139-157. <http://eudml.org/doc/76781>.

author = {Karner, Gunther},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {quantum twist maps; quasi-energies of kicked rotor; RAGE methods},
language = {eng},
number = {2},
pages = {139-157},
publisher = {Gauthier-Villars},
title = {On quantum twist maps and spectral properties of Floquet operators},
url = {http://eudml.org/doc/76781},
volume = {68},
year = {1998},

AU - Karner, Gunther
TI - On quantum twist maps and spectral properties of Floquet operators
JO - Annales de l'I.H.P. Physique théorique
PY - 1998
PB - Gauthier-Villars
VL - 68
IS - 2
SP - 139
EP - 157
LA - eng
KW - quantum twist maps; quasi-energies of kicked rotor; RAGE methods
UR - http://eudml.org/doc/76781
ER -


  1. [1] J. Bellissard and A. Barelli, Dynamical localization, mathematical framework, preprint, 1991. MR1155875
  2. [2] J. Bellissard, Stability and instability in quantum mechanics, In: Trends and developments in the eighties, S. ALBEVERIO and Ph. BLANCHARD Eds., Singapore, World Scientific, 1985. Zbl0584.35024MR853743
  3. [3] H.R. Jauslin and J.L. Lebowitz, Spectral and stability aspects of quantum chaos, Chaos, Vol. 1, 1991, pp. 114-137. Zbl0899.58059MR1135898
  4. [4] Ya G. Sinai, Some mathematical problems in the theory of quantum chaos, Physica, Vol. A 163, 1990, pp. 197-204. Zbl0713.58057MR1043648
  5. [5] L. Geisler III and J.S. Howland, Spectra of quasienergies, preprint, 1995. MR1438922
  6. [6] M. Combescure, Recurrent versus diffusive dynamics for a kicked quantum system, Ann. Inst. H. Poincaré, Vol. A 57, 1992, pp. 67-79. Zbl0766.58061MR1176358
  7. [7] G. Karner, The dynamics of the quantum standard map, preprint, 1996. MR1267705
  8. [8] G. Casati and L. Molinari, Quantum chaos with time-periodic Hamiltonians, Prog. Theo. Phys., Suppl. Vol. 98, 1989, pp. 287-307. MR1033467
  9. [9] H.R. Jauslin, Stability and chaos in classical and quantum Hamiltonian systems, In: Proc. II Granada seminar on computational physics, Singapore, World Scientific, 1993. MR1349116
  10. [10] E. Merbacher, Quantum mechanics, New York, Wiley, 1961. Zbl0102.42701
  11. [11] V. Enss and K. Veselić, Bound states and propagating states for time-dependent Hamiltonians, Ann. Inst. H. Poincaré, Vol. 39, 1983, pp. 159-191. Zbl0532.47007MR722684
  12. [12] N.I. Akhiezer and I.M. Glazman, Theory of linear operators in Hilbert spaces, London, Pitman, 1981. Zbl0467.47001
  13. [13] Y. Last, Quantum dynamics and decomposition of singular continuous spectra, preprint, 1995 and A. Joye, Private communication. MR1423040
  14. [14] J.M. Combes, Connections between quantum dynamics and spectral properties of time–evolution operators, In: Differential equations with applications to mathematical physics, W. F. AMES, E. M. HARRELL II, and J. V. HEROD Eds., New York, Academic Press, 1993. Zbl0797.35136MR1207148
  15. [15] G. Karner, The simplified Fermi accelerator in classical and quantum mechanics, J. Stat. Phys., Vol. 77, 1994, pp. 867-879. Zbl0839.60075MR1301465
  16. [16] A.J. Lichtenberg and M.A. Lieberman, Fermi acceleration revisited, Physica, Vol. 1 D, 1980, pp. 291-305. Zbl1194.37092MR602112
  17. [17] G. Karner, The Schrödinger equation on time-dependent domains. 1. Time-periodic case, preprint, 1996. 
  18. [18] G. Karner and M. Mukherjee, A new characterization of irrational numbers of constant type, preprint, 1996. Zbl0893.11004
  19. [19] S. Lang, Introduction to diophantine approximations, Reading, Addison-Wesely, 1966. Zbl0144.04005MR209227
  20. [20] M. Mukherjee, Irrational numbers of constant type and diophantine conditions, preprint, 1995. 
  21. [21] G. Birkhoff and G.C. Rota, Ordinary differential equations, 3rd ed., New York, Wiley, 1978. Zbl0377.34001MR507190
  22. [22] K. Ireland and M. Rosen, A classical introduction to modern number theory, 2nd ed., New York, Springer, 1993. Zbl0712.11001MR661047
  23. [23] J.S. Howland, Private communication. 
  24. [24] G. Casati and I. Guarneri, Non-recurrent behaviour in quantum mechanics, Commun. Math. Phys., 95, 1984, pp. 121-127. Zbl0581.46062MR757057

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.