Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation

Nakao Hayashi; Pavel I. Naumkin

Annales de l'I.H.P. Physique théorique (1998)

  • Volume: 68, Issue: 2, page 159-177
  • ISSN: 0246-0211

How to cite

top

Hayashi, Nakao, and Naumkin, Pavel I.. "Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation." Annales de l'I.H.P. Physique théorique 68.2 (1998): 159-177. <http://eudml.org/doc/76782>.

@article{Hayashi1998,
author = {Hayashi, Nakao, Naumkin, Pavel I.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {derivative nonlinear Schrödinger equation; asymptotic behavior in time; large time asymptotic formula; modified scattering state},
language = {eng},
number = {2},
pages = {159-177},
publisher = {Gauthier-Villars},
title = {Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation},
url = {http://eudml.org/doc/76782},
volume = {68},
year = {1998},
}

TY - JOUR
AU - Hayashi, Nakao
AU - Naumkin, Pavel I.
TI - Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation
JO - Annales de l'I.H.P. Physique théorique
PY - 1998
PB - Gauthier-Villars
VL - 68
IS - 2
SP - 159
EP - 177
LA - eng
KW - derivative nonlinear Schrödinger equation; asymptotic behavior in time; large time asymptotic formula; modified scattering state
UR - http://eudml.org/doc/76782
ER -

References

top
  1. [1] A. Friedman, Partial Differential Equations, New York, Holt-Rinehart and Winston, 1969. Zbl0224.35002MR445088
  2. [2] T. Cazenave, Equation de Schrödinger non lineairés en dimension deau, Proceeding of the Royal Society of Edinburgh, Vol. 84 A, 1979, pp. 327-346. Zbl0428.35021MR559676
  3. [3] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case; II Scattering theory, general case, J. Funct. Anal., Vol. 32, 1979, pp. 1-71. Zbl0396.35028MR533218
  4. [4] J. Ginibre and T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension n ≥ 2, Commun. Math. Phys., Vol. 151, 1993, pp. 619-645. Zbl0776.35070MR1207269
  5. [5] J. Ginibre, T. Ozawa and G. Velo, On the existence of wave operators for a class of nonlinear Schrödinger equations, Ann. IHP (Phys. Théor), Vol. 60, 1994, pp. 211-239. Zbl0808.35136MR1270296
  6. [6] N. Hayashi, The initial value problem for the derivative nonlinear Schrödinger equation in the energy space, J. Nonlinear Anal. T.M.A., Vol. 32, 1993, pp. 823-833. Zbl0787.35099MR1214746
  7. [7] N. Hayashi and T. Ozawa, On the derivative nonlinear Schrödinger equation, Physica D, Vol. 55, 1992, pp. 14-36. Zbl0741.35081MR1152001
  8. [8] N. Hayashi and T. Ozawa, Finite energy solutions of nonlinear Schrödinger equations of derivative type, SIAM J. Math. Anal., Vol. 25, 1994, pp. 1488-1503. Zbl0809.35124MR1302158
  9. [9] N. Hayashi and T. Ozawa, Modified wave operators for the derivative nonlinear Schödinger equations, Math. Annalen, Vol. 298, 1994, pp. 557-576. Zbl0791.35124MR1262776
  10. [10] N. Hayashi and M. Tsutsumi, L∞-decay of classical solutions for nonlinear Schrödinger equations, Proceeding of the Royal Society of Edinburgh, Vol. 104A, 1986, pp. 309-327. Zbl0651.35014MR877907
  11. [11] N. Hayashi and Y. Tsutsumi, Remarks on the scattering problem for nonlinear Schrödinger equations, Differential Equations and Mathematical Physics, Lecture Note in Mathematics, Edited by I.W. Knowles and Y. Saito, Springer-Verlag, Vol. 1285, 1986, pp. 162-168. Zbl0633.35059MR921265
  12. [12] N. Hayashi, K. Nakamitsu and M. Tsutsumi, On solutions of the initial value problem for the nonlinear Schrödinger equations in one space dimension, Math. Z., Vol. 192, 1986, pp. 637-650. Zbl0617.35025MR847012
  13. [13] N. Hayashi, K. Nakamitsu and M. Tsutsumi, On solutions of the initial value problem for nonlinear Schrödinger equations, J. Funct. Anal., Vol. 71, 1987, pp. 218-245. Zbl0657.35033MR880978
  14. [14] N. Hayashi and P.I. Naumkin, Large time asymptotics of solutions to the generalized Benjamin-Ono equation, Trans. A.M.S. (to appear). Zbl0903.35066MR1491867
  15. [15] S. Katayama and Y. Tsutsumi, Global existence of solutions for nonlinear Schrödinger equations in one space dimension, Commun. P.D.E., Vol. 19, 1994, pp. 1971-1997. Zbl0832.35130MR1301179
  16. [16] D.J. Kaup and A.C. Newell, An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., Vol. 19, 1978, pp. 789-801. Zbl0383.35015MR464963
  17. [17] A. Kundu, Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger type equations, J. Math. Phys., Vol. 25, 1984, pp. 3433-3438. MR767547
  18. [18] W. Mio, T. Ogino, K. Minami and S. Takeda, Modified nonlinear Schrödinger equation for Alfven waves propagating along the magnetic field in cold plasmas, J. Phys. Soc. Japan, Vol. 41, pp. 265-271. Zbl1334.76181MR462141
  19. [19] E. Mjølhus, On the modulational instability of hydromagnetic waves parallel to the magnetic field, J. Plasma Phys., Vol. 16, 1976, pp. 321-334. 
  20. [20] P.I. Naumkin, Asymptotics for large time for nonlinear Schrödinger equation, The Proceedings of the 4th MSJ International Reserch Institute on "Nonlinear Waves", GAKUTO International Series, Mathematical Sciences and Applications, Gakkotosho, 1996 (to appear). Zbl0890.35145MR1602654
  21. [21] P.I. Naumkin, Asymptotics for large time of solutions to nonlinear Schrödinger equations (in Russian), Izvestia RAS, ser. Math. (to appear). 
  22. [22] T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension, Commun. Math. Phys., Vol. 139, 1991, pp. 479-493. Zbl0742.35043MR1121130
  23. [23] M. Tsutsumi and I. Fukuda, On solutions of the derivative nonlinear Schrödinger equation. Existence and uniqueness theorem, Funkcialaj Ekvacioj, Vol. 23, 1981, pp. 259-277. Zbl0478.35032MR621533
  24. [24] M. Tsutsumi and I. Fukuda, On solutions of the derivative nonlinear Schrödinger equation II, Funkcialaj Ekvacioj, Vol. 24, 1981, pp. 85-94. Zbl0491.35016MR634894
  25. [25] Y. Tsutsumi, Scattering problem for nonlinear Schrödinger equations, Ann. IHP (Phys. Théor.), Vol. 43, 1985, pp. 321-347. Zbl0612.35104MR824843

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.