On the existence of the wave operators for a class of nonlinear Schrödinger equations

J. Ginibre; T. Ozawa; G. Velo

Annales de l'I.H.P. Physique théorique (1994)

  • Volume: 60, Issue: 2, page 211-239
  • ISSN: 0246-0211

How to cite

top

Ginibre, J., Ozawa, T., and Velo, G.. "On the existence of the wave operators for a class of nonlinear Schrödinger equations." Annales de l'I.H.P. Physique théorique 60.2 (1994): 211-239. <http://eudml.org/doc/76633>.

@article{Ginibre1994,
author = {Ginibre, J., Ozawa, T., Velo, G.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {wave operator; asymptotic state},
language = {eng},
number = {2},
pages = {211-239},
publisher = {Gauthier-Villars},
title = {On the existence of the wave operators for a class of nonlinear Schrödinger equations},
url = {http://eudml.org/doc/76633},
volume = {60},
year = {1994},
}

TY - JOUR
AU - Ginibre, J.
AU - Ozawa, T.
AU - Velo, G.
TI - On the existence of the wave operators for a class of nonlinear Schrödinger equations
JO - Annales de l'I.H.P. Physique théorique
PY - 1994
PB - Gauthier-Villars
VL - 60
IS - 2
SP - 211
EP - 239
LA - eng
KW - wave operator; asymptotic state
UR - http://eudml.org/doc/76633
ER -

References

top
  1. [1] J.E. Barab, Nonexistence of Asymptotically Free Solutions for Nonlinear Schrödinger Equation, J. Math. Phys., Vol. 25, 1984, pp. 3270-3273. Zbl0554.35123MR761850
  2. [2] J. Bergh and J. Löfström, Interpolation Spaces, Berlin, Springer, 1976. Zbl0344.46071MR482275
  3. [3] T. Cazenave, An Introduction to Nonlinear Schrödinger Equations, Textos de Métodos Matematicos, Vol. 22, Instituto de Matematica, Rio de Janeiro, 1989. 
  4. [4] T. Cazenave and F. Weissler, The Cauchy Problem for the Critical Nonlinear Schrödinger Equation in Hs, Nonlin. Anal. TMA, Vol. 14, 1990, pp. 807-836. Zbl0706.35127MR1055532
  5. [5] T. Cazenave and F. Weissler, Rapidly Decaying Solutions of the Nonlinear Schrödinger Equation, Commun. Math. Phys., Vol. 147, 1992, p. 75-100. Zbl0763.35085MR1171761
  6. [6] J. Ginibre and T. Ozawa, Long Range Scattering for Nonlinear Schrödinger and Hartree Equations in Space Dimension n≧2, Commun. Math. Phys., Vol. 151, 1993, pp. 619-645. Zbl0776.35070MR1207269
  7. [7] J. Ginibre and G. Velo, On a Class of Nonlinear Schrödinger Equations I. The Cauchy Problem General Case, J. Funct. Anal., Vol. 32, 1979, p. 1-32. Zbl0396.35028MR533218
  8. [8] J. Ginibre and G. Velo, On a Class of Nonlinear Schrödinger Equations II. Scattering Theory, General Case, J. Funct. Anal., Vol. 32, 1979, pp. 33-71. Zbl0396.35029MR533219
  9. [9] J. Ginibre and G. Velo, Scattering Theory in the Energy Space for a Class of Nonlinear Schrödinger Equations, J. Math. Pures Appl., Vol. 64, 1985, p. 363-401. Zbl0535.35069MR839728
  10. [10] J. Ginibre and G. Velo, The Global Cauchy Problem for the Nonlinear Klein-Gordon Equation, Math. Z., Vol. 189, 1985, pp. 487-505. Zbl0549.35108MR786279
  11. [11] J. Ginibre and G. Velo, Time Decay of Finite Energy Solutions of the Nonlinear Klein Gordon and Schrödinger Equations, Ann. Inst. Henri Poincaré, Phys. Théor., Vol. 43, 1985, pp. 399-442. Zbl0595.35089MR824083
  12. [12] J. Ginibre and G. Velo, Scattering Theory in the Energy Space for a Class of Nonlinear Wave Equations, Commun. Math. Phys., Vol. 123, 1989, pp. 535-573. Zbl0698.35112MR1006294
  13. [13] J. Ginibre and G. Velo, Smoothing Properties and Retarded Estimates for Some Dispersive Evolution Equations, Commun. Math. Phys., Vol. 144, 1992, pp. 163-188. Zbl0762.35008MR1151250
  14. [14] N. Hayashi and M. Tsutsumi, L∞ (Rn)-Decay of Classical Solutions for Non Linear Schrödinger Equations, Proceedings of the Royal Society of Edinburgh, Vol. 104, 1986, pp. 309-327. Zbl0651.35014MR877907
  15. [15] N. Hayashi and Y. Tsutsumi, Remarks on the Scattering Problem for Nonlinear Schrödinger Equations, Lecture Notes in Math., Vol. 1285, 1987, Springer, pp. 162- 168. Zbl0633.35059MR921265
  16. [16] T. Kato, On Nonlinear Schrödinger Equations, Ann. Inst. Henri Poincaré, Phys. Théor., Vol. 46, 1987, pp. 113-129. Zbl0632.35038MR877998
  17. [17] T. Kato, Nonlinear Schrödinger Equations, in: Schrödinger Operators, Lect. Notes Phys., Vol. 345, Springer, 1989. Zbl0698.35131MR1037322
  18. [18] J.E. Lin and W.A. Strauss, Decay and Scattering of Solutions of a Nonlinear Schrödinger Equation, J. Funct. Anal., Vol. 30, 1978, pp. 245-263. Zbl0395.35070MR515228
  19. [19] H.P. McKean and J. Shatah, The Nonlinear Schrödinger Equation and the Nonlinear Heat Equation; Reduction to Linear Form, Comm. Pure Appl. Math., Vol. 44, 1991, pp. 1067-1080. Zbl0773.35075MR1127050
  20. [20] H. Nawa and T. Ozawa, Nonlinear Scattering with Non Local Interaction, Commun. Math. Phys., Vol. 146, 1992, pp. 259-275. Zbl0748.35046MR1165183
  21. [21] T. Ozawa, Long Range Scattering for Nonlinear Schrödinger Equations in One Space Dimension, Commun. Math. Phys., Vol. 139, 1991, pp. 479-493. Zbl0742.35043MR1121130
  22. [22] W.A. Strauss, Nonlinear Scattering Theory, in Scattering Theory in Mathematical Physics, J. LAVITA, J. P. MARCHAND, eds, Reidel, 1974. Zbl0297.35062
  23. [23] W.A. Strauss, Nonlinear Scattering Theory at Low Energy, J. Funct. Anal., Vol. 41, 1981, pp. 110-133. Zbl0466.47006MR614228
  24. [24] Y. Tsutsumi, Scattering Problem for Nonlinear Schrödinger Equations, Ann. Inst. Henri Poincaré, Phys. Théor., Vol. 43, 1985, pp. 321-347. Zbl0612.35104MR824843
  25. [25] Y. Tsutsumi, Global Existence and Asymptotic Behavior of Solutions for Nonlinear Schrödinger Equations, Doctoral Thesis, University of Tokyo, 1985. 
  26. [26] Y. Tsutsumi, L2 Solutions for Nonlinear Schrödinger Equations and Nonlinear Groups, Funkcialaj Ekvacioj, Vol. 30, 1987, pp. 115-125. Zbl0638.35021MR915266
  27. [27] Y. Tsutsumi and K. Yajima, The asymptotic Behavior of Nonlinear Schrödinger Equations, Bull. Am. Math. Soc., Vol. 11, 1984, pp. 186-188. Zbl0555.35028MR741737
  28. [28] K. Yajima, Existence of Solutions for Schrödinger Evolution Equations, Commun. Math. Phys., Vol. 110, 1987, pp. 415-426. Zbl0638.35036MR891945
  29. [29] H. Triebel, Theory of Function Spaces, Birkhauser, 1983. Zbl0546.46027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.