Classical limit of elastic scattering operator of a diatomic molecule in the Born-Oppenheimer approximation

Th. Jecko

Annales de l'I.H.P. Physique théorique (1998)

  • Volume: 69, Issue: 1, page 83-131
  • ISSN: 0246-0211

How to cite

top

Jecko, Th.. "Classical limit of elastic scattering operator of a diatomic molecule in the Born-Oppenheimer approximation." Annales de l'I.H.P. Physique théorique 69.1 (1998): 83-131. <http://eudml.org/doc/76797>.

@article{Jecko1998,
author = {Jecko, Th.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {1},
pages = {83-131},
publisher = {Gauthier-Villars},
title = {Classical limit of elastic scattering operator of a diatomic molecule in the Born-Oppenheimer approximation},
url = {http://eudml.org/doc/76797},
volume = {69},
year = {1998},
}

TY - JOUR
AU - Jecko, Th.
TI - Classical limit of elastic scattering operator of a diatomic molecule in the Born-Oppenheimer approximation
JO - Annales de l'I.H.P. Physique théorique
PY - 1998
PB - Gauthier-Villars
VL - 69
IS - 1
SP - 83
EP - 131
LA - eng
UR - http://eudml.org/doc/76797
ER -

References

top
  1. [A] S. Agmon, Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations. Princeton University Press, 1982. Zbl0503.35001MR745286
  2. [Ba] A. Balazard-Konlein, Calcul fonctionnel pour des opérateurs h-admissibles à symbole opérateur et applications.Thèse de troisième cycle, université de Nantes, 1985. 
  3. [Bo] M. Born and R. Oppenheimer, Zur Quantentheorie der Molekeln. Annalen der Physik, Vol. 84, 1927, p. 457. JFM53.0845.04
  4. [HR] B. Helffer and D. Robert, Calcul fonctionnel par la transformation de Melin et opérateurs admissibles, J. Funct. Anal., Vol. 53, 1983, pp. 246-268. Zbl0524.35103MR724029
  5. [HS] B. Helffer, J. Sjostrand, Opérateurs de Schrödinger avec champs magnétiques faibles et constants. Exposé No. XII, Séminaire EDP, février 1989, École Polytechnique. Zbl0702.35185MR1032288
  6. [IK] H. Isozaki and H. Kitada, Modified wave operatprs with time-dependent modifiers, J. Fac. Sci. Univ. Tokyo, Vol. 32, 1985, pp. 77-104. Zbl0582.35036MR783182
  7. [J] Th. Jecko, Sections efficaces totales d'une molécule diatomique dans l'approximation de Born-Oppenheimer.Thèse de doctorat, Université de Nantes, 1996. 
  8. [KMSW] M. Klein, A. Martinez, R. Seiler and X.P. Wang, On the Born-Oppenheimer Expansion for Polyatomic Molecules. Commun. Math. Phys., Vol. 143, 1992, pp. 606-639. Zbl0754.35099MR1145603
  9. [KMW1] M. Klein, A. Martinez and X.P. Wang, On the Born-Oppenheimer Approximation of Wave Operators in Molecular Scattering Theory. Commun. Math. Phys., Vol. 152, 1993, pp. 73-95. Zbl0778.35088MR1207670
  10. [KMW2] M. Klein, A. Martinez, X.P. Wang, On the Born-Oppenheimer Approximation of Wave Operators II: Singular Potentials, preprint. Zbl0874.35103
  11. [RS3] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Tome III: Scattering Theory. Academic Press1979. Zbl0405.47007MR529429
  12. [RS4] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Tome IV: Analysis of Operators.Academic Press. Zbl0401.47001
  13. [Ro] D. Robert, Autour de l'approximation semi-classique, Birkhäuser1987. Zbl0621.35001MR897108
  14. [RT] D. Robert and H. Tamura, Semiclassical estimates for resolvents and asymptotics for total cross-section, Ann. IHP Vol. 46, 1987, pp. 415-442. Zbl0648.35066MR912158
  15. [SS] I.M. Sigal and A. Soffer, The N-particle scattering problem: asymptotic completeness for short range systems. Ann. of Math., Vol. 126, 1987, pp. 35-108. Zbl0646.47009MR898052
  16. [WI] X.P. Wang, Time-Decay of Scattering Solutions and resolvent Estimates for Semi-classical Schrödinger Operators.J. Diff. Eq., Vol. 71, 1988, pp. 348-396. Zbl0651.35022
  17. [W2] X.P. Wang, Time-Decay of Scattering Solutions and Classical Trajectories. Ann. IHP, Vol. 47, 1987, pp. 25-37. Zbl0641.35018MR912755
  18. [W3] X.P. Wang, Time-Decay Operators in the Semiclassical Limit II, Short Range Potentials. Trans. AMS, Vol. 322, 1990. Zbl0714.35064MR987170
  19. [W4] X.P. Wang, Approximation semi-classique de l'équation d'Heisenberg. Commun. in Math. Phys., Vol.104, 1986, pp.77-86. Zbl0611.35085MR834482
  20. [Y] K. Yajima, The quasi-classical limit of quantum scattering theory. Comm. in Math. Phys., Vol. 69, 1979, pp. 101-129. Zbl0425.35076

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.