Hilbert spaces for massless particles with nonvanishing helicities
Annales de l'I.H.P. Physique théorique (1999)
- Volume: 70, Issue: 3, page 295-311
- ISSN: 0246-0211
Access Full Article
topHow to cite
topKarpio, Andrzej. "Hilbert spaces for massless particles with nonvanishing helicities." Annales de l'I.H.P. Physique théorique 70.3 (1999): 295-311. <http://eudml.org/doc/76817>.
@article{Karpio1999,
author = {Karpio, Andrzej},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {twistors; phase spaces for massless particles; different helicities; reproducing kernels; Hilbert spaces},
language = {eng},
number = {3},
pages = {295-311},
publisher = {Gauthier-Villars},
title = {Hilbert spaces for massless particles with nonvanishing helicities},
url = {http://eudml.org/doc/76817},
volume = {70},
year = {1999},
}
TY - JOUR
AU - Karpio, Andrzej
TI - Hilbert spaces for massless particles with nonvanishing helicities
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 70
IS - 3
SP - 295
EP - 311
LA - eng
KW - twistors; phase spaces for massless particles; different helicities; reproducing kernels; Hilbert spaces
UR - http://eudml.org/doc/76817
ER -
References
top- [1] R.J. Baston and M.G. Eastwood, The Penrose transform, Oxford, 1989. Zbl0726.58004MR1038279
- [2] T.N. Bailey and R.J. Bailey, Twistors in mathematics and physics, Cambridge, 1990. Zbl0702.53003
- [3] A.L. Carey and K.C. Hannabuss, Rep. Math. Phys., Vol. 13, No 2, 1978. Zbl0406.58018MR516291
- [4] S.S. Chern, Complex Manifolds Without Potential Theory, Van NostrandMathematical Studies, No 15, 1967. Zbl0158.33002MR225346
- [5] R. Godement, Théorie des faisceaux - Herrmann, Paris1964.
- [6] M.G. Eastwood and M.L. Ginsberg, Duality in twistor theory, Duke Math. J., Vol. 48, No 1, 1981. Zbl0483.55004MR610183
- [7] M.G. Eastwood and L.P. Hughston, Massless field based on a line, in [9].
- [8] M.L. Ginsberg, Scattering theory and the geometry of multi-twistor spaces, Trans. Am. Math. Soc., Vol. 276, No 2, 1983. Zbl0549.58036MR688978
- [9] M.L. Ginsberg, A Cohomological Scalar Product Construction, in [9].
- [10] L.P. Hughston, The twistor cohomology of local Hertz potential, in [9].
- [11] L.P. HUGHSTON and R.S. WARD (eds.), Advances in twistor theory, Pitman, Research Notes in Math., 37, San Francisco, London, Melbourne1979. Zbl0463.53039MR578487
- [12] H.P. Jacobsen and M. Verne, Wave and Dirac operators and representation of the conformal group, J. Functional Analysis, Vol. 24, 1979. Zbl0361.22012
- [13] A. Karpio, A. Kryszen and A. Odzijewicz, Two-twistor conformal, hamiltonian spaces, Rep. Math. Phys., Vol. 24, 1986. Zbl0649.53021MR932934
- [14] A. Karpio, Some Approach to the Construction of Coherent States for Massless Particles, Procedings of Second Max Born Symposium, Kluwer Academic Publishers, Netherlands1993. Zbl0882.46032MR1258358
- [15] D.E. Lerner, The Inverse Twistor Function for Positive Frequency Fields, in [9].
- [16] M.A.H. Maccallum and R. Penrose, Twistor theory: an approach to the quantisation of fields and space-time, Phys. Rep. sec C, Vol. 6, No 4, 1972. MR475660
- [17] R. Penrose, The twistor programme, Rep. Math. Phys., Vol. 12, 1977. Zbl0994.81049MR465032
- [18] R. Penrose, Twistor function and sheaf cohomology, in [9].
- [19] P. Tod, Rep. Math. Phys., Vol. 11, 1977.
- [20] R.S. Ward, Massless fields and sheaf cohomology, in [9].
- [21] R.O. Wells, Complex manifolds and mathematical physics., Bull. Am. Math. Soc., Vol. 1, No 2, 1979. Zbl0444.32014MR520077
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.