Hilbert spaces for massless particles with nonvanishing helicities

Andrzej Karpio

Annales de l'I.H.P. Physique théorique (1999)

  • Volume: 70, Issue: 3, page 295-311
  • ISSN: 0246-0211

How to cite

top

Karpio, Andrzej. "Hilbert spaces for massless particles with nonvanishing helicities." Annales de l'I.H.P. Physique théorique 70.3 (1999): 295-311. <http://eudml.org/doc/76817>.

@article{Karpio1999,
author = {Karpio, Andrzej},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {twistors; phase spaces for massless particles; different helicities; reproducing kernels; Hilbert spaces},
language = {eng},
number = {3},
pages = {295-311},
publisher = {Gauthier-Villars},
title = {Hilbert spaces for massless particles with nonvanishing helicities},
url = {http://eudml.org/doc/76817},
volume = {70},
year = {1999},
}

TY - JOUR
AU - Karpio, Andrzej
TI - Hilbert spaces for massless particles with nonvanishing helicities
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 70
IS - 3
SP - 295
EP - 311
LA - eng
KW - twistors; phase spaces for massless particles; different helicities; reproducing kernels; Hilbert spaces
UR - http://eudml.org/doc/76817
ER -

References

top
  1. [1] R.J. Baston and M.G. Eastwood, The Penrose transform, Oxford, 1989. Zbl0726.58004MR1038279
  2. [2] T.N. Bailey and R.J. Bailey, Twistors in mathematics and physics, Cambridge, 1990. Zbl0702.53003
  3. [3] A.L. Carey and K.C. Hannabuss, Rep. Math. Phys., Vol. 13, No 2, 1978. Zbl0406.58018MR516291
  4. [4] S.S. Chern, Complex Manifolds Without Potential Theory, Van NostrandMathematical Studies, No 15, 1967. Zbl0158.33002MR225346
  5. [5] R. Godement, Théorie des faisceaux - Herrmann, Paris1964. 
  6. [6] M.G. Eastwood and M.L. Ginsberg, Duality in twistor theory, Duke Math. J., Vol. 48, No 1, 1981. Zbl0483.55004MR610183
  7. [7] M.G. Eastwood and L.P. Hughston, Massless field based on a line, in [9]. 
  8. [8] M.L. Ginsberg, Scattering theory and the geometry of multi-twistor spaces, Trans. Am. Math. Soc., Vol. 276, No 2, 1983. Zbl0549.58036MR688978
  9. [9] M.L. Ginsberg, A Cohomological Scalar Product Construction, in [9]. 
  10. [10] L.P. Hughston, The twistor cohomology of local Hertz potential, in [9]. 
  11. [11] L.P. HUGHSTON and R.S. WARD (eds.), Advances in twistor theory, Pitman, Research Notes in Math., 37, San Francisco, London, Melbourne1979. Zbl0463.53039MR578487
  12. [12] H.P. Jacobsen and M. Verne, Wave and Dirac operators and representation of the conformal group, J. Functional Analysis, Vol. 24, 1979. Zbl0361.22012
  13. [13] A. Karpio, A. Kryszen and A. Odzijewicz, Two-twistor conformal, hamiltonian spaces, Rep. Math. Phys., Vol. 24, 1986. Zbl0649.53021MR932934
  14. [14] A. Karpio, Some Approach to the Construction of Coherent States for Massless Particles, Procedings of Second Max Born Symposium, Kluwer Academic Publishers, Netherlands1993. Zbl0882.46032MR1258358
  15. [15] D.E. Lerner, The Inverse Twistor Function for Positive Frequency Fields, in [9]. 
  16. [16] M.A.H. Maccallum and R. Penrose, Twistor theory: an approach to the quantisation of fields and space-time, Phys. Rep. sec C, Vol. 6, No 4, 1972. MR475660
  17. [17] R. Penrose, The twistor programme, Rep. Math. Phys., Vol. 12, 1977. Zbl0994.81049MR465032
  18. [18] R. Penrose, Twistor function and sheaf cohomology, in [9]. 
  19. [19] P. Tod, Rep. Math. Phys., Vol. 11, 1977. 
  20. [20] R.S. Ward, Massless fields and sheaf cohomology, in [9]. 
  21. [21] R.O. Wells, Complex manifolds and mathematical physics., Bull. Am. Math. Soc., Vol. 1, No 2, 1979. Zbl0444.32014MR520077

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.