### A canonical construction yielding a global view of twistor theory.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

It is shown that there exists a twistor space on the n-fold connected sum of complex projective planes nCP2, whose algebraic dimension is one and whose general fiber of the algebraic reduction is birational to an elliptic ruled surface or a K3 surface. The former kind of twistor spaces are constructed over nCP2 for any n ≥ 5, while the latter kind of example is constructed over 5CP2. Both of these seem to be the first such example on nCP2. The algebraic reduction in these examples is induced by...

It is shown that operators occurring in the classical Penrose transform are differential. These operators are identified depending on line bundles over the twistor space.

We study the Jones and Tod correspondence between selfdual conformal $4$-manifolds with a conformal vector field and abelian monopoles on Einstein-Weyl $3$-manifolds, and prove that invariant complex structures correspond to shear-free geodesic congruences. Such congruences exist in abundance and so provide a tool for constructing interesting selfdual geometries with symmetry, unifying the theories of scalar-flat Kähler metrics and hypercomplex structures with symmetry. We also show that in the presence...

It is well known that starting with real structure, the Cayley-Dickson process gives complex, quaternionic, and octonionic (Cayley) structures related to the Adolf Hurwitz composition formula for dimensions p = 2, 4 and 8, respectively, but the procedure fails for p = 16 in the sense that the composition formula involves no more a triple of quadratic forms of the same dimension; the other two dimensions are n = 27. Instead, Ławrynowicz and Suzuki (2001) have considered graded fractal bundles of...