Entropies des flots magnétiques

Stéphane Grognet

Annales de l'I.H.P. Physique théorique (1999)

  • Volume: 71, Issue: 4, page 395-424
  • ISSN: 0246-0211

How to cite

top

Grognet, Stéphane. "Entropies des flots magnétiques." Annales de l'I.H.P. Physique théorique 71.4 (1999): 395-424. <http://eudml.org/doc/76840>.

@article{Grognet1999,
author = {Grognet, Stéphane},
journal = {Annales de l'I.H.P. Physique théorique},
language = {fre},
number = {4},
pages = {395-424},
publisher = {Gauthier-Villars},
title = {Entropies des flots magnétiques},
url = {http://eudml.org/doc/76840},
volume = {71},
year = {1999},
}

TY - JOUR
AU - Grognet, Stéphane
TI - Entropies des flots magnétiques
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 71
IS - 4
SP - 395
EP - 424
LA - fre
UR - http://eudml.org/doc/76840
ER -

References

top
  1. [1] V. Arnol'd, Some remarks on flows of line elements and frames, Sov. Math. Dokl.2 (1961) 562-564, traduit de Dokl. Akad. Nauk SSSR138 (1961) 255-257. Zbl0124.14601MR158330
  2. [2] W. Ballmann and M. Wojtkowski, An estimate for the measure theoretic entropy of geodesic flows, Ergod. Th. and Dynam. Sys.9 (1989) 271-279. Zbl0707.58036MR1007410
  3. [3] G. Besson, G. Courtois et S. Gallot, Le volume et l'entropie minimale des espaces localement symétriques, Invent. Math.103 (1991) 417-445. Zbl0723.53029MR1085114
  4. [4] G. Besson, G. Courtois et S. Gallot, Les variétés hyperboliques sont des minima locaux de l'entropie topologique, Invent. Math.117 (1994) 403-445. Zbl0814.53031MR1283725
  5. [5] G. Besson, G. Courtois et S. Gallot, Volumes, entropies et rigidités des espaces localement symétriques de courbure strictement négative, C. R. Acad. Sci. Paris319 (1994) 81-84. Zbl0812.53041MR1285903
  6. [6] G. Besson, G. Courtois et S. Gallot, Entropies et rigidités des espaces localement symétriques de courbure strictement négative, G. A. F. A.5 (1995) 731- 799. Zbl0851.53032MR1354289
  7. [7] G. Besson, G. Courtois and S. Gallot, Survey article: minimal entropy and Mostow's rigidity theorems, Ergod. Th. and Dynam. Sys.16 (1996) 623-649. Zbl0887.58030MR1406425
  8. [8] R. Bowen, Periodic orbits for periodic flows, Amer. J. Math.94 (1972) 1-30. Zbl0254.58005MR298700
  9. [9] J. Boland, The dynamics and geometry of contact Anosov flows, Ph.D. Thesis, Michigan Ann Arbor University, 1998. http://www.math.lsa.umich.edu/∼boland/research.html. 
  10. [10] D. Egloff, On the dynamics of uniform Finsler manifolds of negative flag curvature, Ann. Global Anal. Geom.15 (1997) 101-116. Zbl0884.53052MR1448718
  11. [11] P. Foulon, Géométrie des équations différentielles du second ordre, Ann. Inst. H. Poincaré, Phys. Théor.45 (1986) 1-28. Zbl0624.58011MR856446
  12. [12] P. Foulon, Locally symmetric Finsler spaces in negative curvature, C. R. Acad. Sci., Paris I324 (1997) 1127-1132. Zbl0882.53051MR1451935
  13. [13] A. Freire and R. Mañé, On the entropy of the geodesic flow in manifolds without conjugate points, Invent. Math.69 (1982) 359-392. Zbl0476.58019MR679763
  14. [14] S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry2nd. Ed., Universitext, Springer, Berlin, 1987. Zbl0636.53001MR2088027
  15. [15] C. Godbillon, Éléments de Topologie Algébrique, Hermann, Paris, 1971, pp. 211-214. Zbl0218.55001MR301725
  16. [16] S. Grognet, Flots magnétiques en courbure négative. À paraître dans Ergod. Th. and Dynam. Sys. Zbl0935.53037
  17. [17] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, Cambridge, 1995. Zbl0878.58020MR1326374
  18. [18] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. l'IHES72 (1980) 137-173. Zbl0445.58015MR573822
  19. [19] A. Katok, Entropy and closed geodesics, Ergod. Th. and Dynam. Sys.2 (1982) 339-365. Zbl0525.58027MR721728
  20. [20] A. Katok, Four applications to conformal equivalence to geometry and dynamics, Ergod. Th. and Dynam. Sys.8* (1988) 139-152. Zbl0668.58042MR967635
  21. [21] P. Malliavin, Intégration et Probabilités-analyse de Fourier et Analyse Spectrale, Masson, Paris, 1982, pp. 129-132. Zbl0509.28001MR662563
  22. [22] A. Manning, Topological entropy for geodesic flows, Ann. Math.110 (1979) 567- 573. Zbl0426.58016MR554385
  23. [23] R. Osserman and P. Sarnak, A new curvature invariant and entropy of geodesic flows, Invent. Math.77 (1984) 455-462. Zbl0536.53048MR759262
  24. [24] M.-Y. Pang, The structure of Legendre foliations, Trans. Amer. Math. Soc.320 (1990) 417-455. Zbl0702.53022MR1016808
  25. [25] W. Parry, Synchronization of canonical measures for hyperbolic attractors, Comm. Math. Phys.106 (1986) 267-275. Zbl0618.58026MR855312
  26. [26] W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque187-188 (1990) 1-268. Zbl0726.58003MR1085356
  27. [27] G. and M. Paternain, Anosov geodesic flows and twisted symplectic structures, in: Ledrappier et al. (Eds.), Proc. 1st International Conference on Dynamical Systems, Montevideo, Uruguay, 1995—a tribute to R. Mañe, Harlow, Longman, Pitman, Res. Notes Math. Ser.362 (1996) 132-145. Zbl0868.58062MR1460801
  28. [28] G. Paternain, On the regularity of the Anosov splitting for twisted geodesic flows, Math. Res. Lett.4 (1997) 871-888. Zbl0901.58017MR1492126
  29. [29] G. and M. Paternain, First derivative of topological entropy for Anosov geodesic flows in the presence of magnetic fields, Nonlinearity10 (1997) 121-131. Zbl0907.58053MR1430743
  30. [30] Y. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory, Russ. Math. Surveys32 (1977) 55-114; from Uspekhi Mat. Nauk32 (1977) 55-112. Zbl0383.58011
  31. [31] F. Warner, Foundations of Differential Manifolds and Lie Groups, Springer, Berlin, 1983, Chapitre 6. Zbl0516.58001MR722297

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.