Entropies des flots magnétiques
Annales de l'I.H.P. Physique théorique (1999)
- Volume: 71, Issue: 4, page 395-424
- ISSN: 0246-0211
Access Full Article
topHow to cite
topGrognet, Stéphane. "Entropies des flots magnétiques." Annales de l'I.H.P. Physique théorique 71.4 (1999): 395-424. <http://eudml.org/doc/76840>.
@article{Grognet1999,
author = {Grognet, Stéphane},
journal = {Annales de l'I.H.P. Physique théorique},
language = {fre},
number = {4},
pages = {395-424},
publisher = {Gauthier-Villars},
title = {Entropies des flots magnétiques},
url = {http://eudml.org/doc/76840},
volume = {71},
year = {1999},
}
TY - JOUR
AU - Grognet, Stéphane
TI - Entropies des flots magnétiques
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 71
IS - 4
SP - 395
EP - 424
LA - fre
UR - http://eudml.org/doc/76840
ER -
References
top- [1] V. Arnol'd, Some remarks on flows of line elements and frames, Sov. Math. Dokl.2 (1961) 562-564, traduit de Dokl. Akad. Nauk SSSR138 (1961) 255-257. Zbl0124.14601MR158330
- [2] W. Ballmann and M. Wojtkowski, An estimate for the measure theoretic entropy of geodesic flows, Ergod. Th. and Dynam. Sys.9 (1989) 271-279. Zbl0707.58036MR1007410
- [3] G. Besson, G. Courtois et S. Gallot, Le volume et l'entropie minimale des espaces localement symétriques, Invent. Math.103 (1991) 417-445. Zbl0723.53029MR1085114
- [4] G. Besson, G. Courtois et S. Gallot, Les variétés hyperboliques sont des minima locaux de l'entropie topologique, Invent. Math.117 (1994) 403-445. Zbl0814.53031MR1283725
- [5] G. Besson, G. Courtois et S. Gallot, Volumes, entropies et rigidités des espaces localement symétriques de courbure strictement négative, C. R. Acad. Sci. Paris319 (1994) 81-84. Zbl0812.53041MR1285903
- [6] G. Besson, G. Courtois et S. Gallot, Entropies et rigidités des espaces localement symétriques de courbure strictement négative, G. A. F. A.5 (1995) 731- 799. Zbl0851.53032MR1354289
- [7] G. Besson, G. Courtois and S. Gallot, Survey article: minimal entropy and Mostow's rigidity theorems, Ergod. Th. and Dynam. Sys.16 (1996) 623-649. Zbl0887.58030MR1406425
- [8] R. Bowen, Periodic orbits for periodic flows, Amer. J. Math.94 (1972) 1-30. Zbl0254.58005MR298700
- [9] J. Boland, The dynamics and geometry of contact Anosov flows, Ph.D. Thesis, Michigan Ann Arbor University, 1998. http://www.math.lsa.umich.edu/∼boland/research.html.
- [10] D. Egloff, On the dynamics of uniform Finsler manifolds of negative flag curvature, Ann. Global Anal. Geom.15 (1997) 101-116. Zbl0884.53052MR1448718
- [11] P. Foulon, Géométrie des équations différentielles du second ordre, Ann. Inst. H. Poincaré, Phys. Théor.45 (1986) 1-28. Zbl0624.58011MR856446
- [12] P. Foulon, Locally symmetric Finsler spaces in negative curvature, C. R. Acad. Sci., Paris I324 (1997) 1127-1132. Zbl0882.53051MR1451935
- [13] A. Freire and R. Mañé, On the entropy of the geodesic flow in manifolds without conjugate points, Invent. Math.69 (1982) 359-392. Zbl0476.58019MR679763
- [14] S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry2nd. Ed., Universitext, Springer, Berlin, 1987. Zbl0636.53001MR2088027
- [15] C. Godbillon, Éléments de Topologie Algébrique, Hermann, Paris, 1971, pp. 211-214. Zbl0218.55001MR301725
- [16] S. Grognet, Flots magnétiques en courbure négative. À paraître dans Ergod. Th. and Dynam. Sys. Zbl0935.53037
- [17] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, Cambridge, 1995. Zbl0878.58020MR1326374
- [18] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. l'IHES72 (1980) 137-173. Zbl0445.58015MR573822
- [19] A. Katok, Entropy and closed geodesics, Ergod. Th. and Dynam. Sys.2 (1982) 339-365. Zbl0525.58027MR721728
- [20] A. Katok, Four applications to conformal equivalence to geometry and dynamics, Ergod. Th. and Dynam. Sys.8* (1988) 139-152. Zbl0668.58042MR967635
- [21] P. Malliavin, Intégration et Probabilités-analyse de Fourier et Analyse Spectrale, Masson, Paris, 1982, pp. 129-132. Zbl0509.28001MR662563
- [22] A. Manning, Topological entropy for geodesic flows, Ann. Math.110 (1979) 567- 573. Zbl0426.58016MR554385
- [23] R. Osserman and P. Sarnak, A new curvature invariant and entropy of geodesic flows, Invent. Math.77 (1984) 455-462. Zbl0536.53048MR759262
- [24] M.-Y. Pang, The structure of Legendre foliations, Trans. Amer. Math. Soc.320 (1990) 417-455. Zbl0702.53022MR1016808
- [25] W. Parry, Synchronization of canonical measures for hyperbolic attractors, Comm. Math. Phys.106 (1986) 267-275. Zbl0618.58026MR855312
- [26] W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque187-188 (1990) 1-268. Zbl0726.58003MR1085356
- [27] G. and M. Paternain, Anosov geodesic flows and twisted symplectic structures, in: Ledrappier et al. (Eds.), Proc. 1st International Conference on Dynamical Systems, Montevideo, Uruguay, 1995—a tribute to R. Mañe, Harlow, Longman, Pitman, Res. Notes Math. Ser.362 (1996) 132-145. Zbl0868.58062MR1460801
- [28] G. Paternain, On the regularity of the Anosov splitting for twisted geodesic flows, Math. Res. Lett.4 (1997) 871-888. Zbl0901.58017MR1492126
- [29] G. and M. Paternain, First derivative of topological entropy for Anosov geodesic flows in the presence of magnetic fields, Nonlinearity10 (1997) 121-131. Zbl0907.58053MR1430743
- [30] Y. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory, Russ. Math. Surveys32 (1977) 55-114; from Uspekhi Mat. Nauk32 (1977) 55-112. Zbl0383.58011
- [31] F. Warner, Foundations of Differential Manifolds and Lie Groups, Springer, Berlin, 1983, Chapitre 6. Zbl0516.58001MR722297
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.