Quasi-compactness and uniform ergodicity of Markov operators

Michael Lin

Annales de l'I.H.P. Probabilités et statistiques (1975)

  • Volume: 11, Issue: 4, page 345-354
  • ISSN: 0246-0203

How to cite

top

Lin, Michael. "Quasi-compactness and uniform ergodicity of Markov operators." Annales de l'I.H.P. Probabilités et statistiques 11.4 (1975): 345-354. <http://eudml.org/doc/77029>.

@article{Lin1975,
author = {Lin, Michael},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {4},
pages = {345-354},
publisher = {Gauthier-Villars},
title = {Quasi-compactness and uniform ergodicity of Markov operators},
url = {http://eudml.org/doc/77029},
volume = {11},
year = {1975},
}

TY - JOUR
AU - Lin, Michael
TI - Quasi-compactness and uniform ergodicity of Markov operators
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1975
PB - Gauthier-Villars
VL - 11
IS - 4
SP - 345
EP - 354
LA - eng
UR - http://eudml.org/doc/77029
ER -

References

top
  1. [1] A. Brunel, Chaines abstraites de Markov vérifiant une condition de Orey. Z. Wahrscheinlichkeitstheorie verw. Gebiete, t. 19, 1971, p. 323-329. Zbl0203.50305MR317410
  2. [2] A. Brunel and D. Revuz, Quelques applications probabilistes de la quasi-compacité. Ann. Inst. H. Poincaré (sect. B), t. 10, 1974, p. 301-337. Zbl0318.60064MR373008
  3. [3] W. Doeblin, Sur les propriétés asymptotiques de mouvements régis par certains types de chaines simples. Bull. Math. Soc. Roum. Sci., t. 39, 1937, n° 1, p. 57-115 ; n° 2, p. 3-61. Zbl0019.17503JFM63.1077.03
  4. [4] J.L. Doob, Stochastic Processes. Wiley, New York, 1953. Zbl0053.26802MR58896
  5. [5] N. Dunford and J.T. Schwartz, Linear operators. Part I. Interscience, New York, 1958. Zbl0084.10402MR117523
  6. [6] S.R. Foguel, Ergodic theory of Markov processes. Van-Nostrand, New York, 1969. Zbl0282.60037MR261686
  7. [7] S.R. Foguel and B. Weiss, On convex power series of a conservative Markov operator. Proc. Amer. Math. Soc., t. 38, 1973, p. 325-330. Zbl0268.47014MR313476
  8. [8] S. Horowitz, Transition probabilities and contractions of L∞. Z. Wahrscheinlichkeitstheorie Verw. Gebiete, t. 24, 1972, p. 263-274. Zbl0228.60028MR331516
  9. [9] M. Lin, On quasi-compact Markov operators. Ann. Prob., t. 2, 1974, p. 464-475. Zbl0285.28019MR368148
  10. [10] M. Lin, On the uniform ergodic theorem. Proc. Amer. Math. Soc., t. 43, 1974, p. 337-340. Zbl0252.47004MR417821
  11. [11] M. Lin, On the uniform ergodic theorem, II. Proc. Amer. Math. Soc., t. 46, 1974, p. 217-225. Zbl0291.47006MR417822
  12. [12] S.T.C. Moy, Period of an irreducible operator. Illinois J. Math., t. 11, 1967, p. 24-39. Zbl0171.16104MR211470
  13. [13] J. Neveu, Mathematical Foundations of the Calculus of Probability. Holden-day, San Francisco, 1965. Zbl0137.11301MR198505
  14. [14] I. Sawashima and F. Niiro, Reduction of a Sub-Markov operator to its irreducible components. Nat. Sci. Rep. of Ochakomizu University, t. 24, 1973, p. 35-59. Zbl0281.47021MR343065
  15. [15] H.H. Schaefer, Invariant ideals of positive operators in C(X). Illinois J. Math., t. 11, 1967, p. 703-715. Zbl0168.11801MR218912
  16. [16] K. Yosida and S. Kakutani, Operator theoretical treatment of Markoff's process and mean ergodic theorem. Ann. of Math. (2), t. 42, 1941, p. 188-228. Zbl0024.32402MR3512JFM67.0417.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.