Quasi-compactness and mean ergodicity for Markov kernels acting on weighted supremum normed spaces

Loïc Hervé

Annales de l'I.H.P. Probabilités et statistiques (2008)

  • Volume: 44, Issue: 6, page 1090-1095
  • ISSN: 0246-0203

Abstract

top
Let P be a Markov kernel on a measurable space E with countably generated σ-algebra, let w:E→[1, +∞[ such that Pw≤Cw with C≥0, and let w be the space of measurable functions onE satisfying ‖f‖w=sup{w(x)−1|f(x)|, x∈E}<+∞. We prove that Pis quasi-compact on ( w , · w ) if and only if, for all f w , ( 1 n k = 1 n P k f ) n contains a subsequence converging in w toΠf=∑di=1μi(f)vi, where the vi’s are non-negative bounded measurable functions on E and the μi’s are probability distributions on E. In particular, when the space of P-invariant functions in w is finite-dimensional, uniform ergodicity is equivalent to mean ergodicity.

How to cite

top

Hervé, Loïc. "Quasi-compactness and mean ergodicity for Markov kernels acting on weighted supremum normed spaces." Annales de l'I.H.P. Probabilités et statistiques 44.6 (2008): 1090-1095. <http://eudml.org/doc/78004>.

@article{Hervé2008,
abstract = {Let P be a Markov kernel on a measurable space E with countably generated σ-algebra, let w:E→[1, +∞[ such that Pw≤Cw with C≥0, and let $\mathcal \{B\}_\{w\}$ be the space of measurable functions onE satisfying ‖f‖w=sup\{w(x)−1|f(x)|, x∈E\}&lt;+∞. We prove that Pis quasi-compact on $(\mathcal \{B\}_\{w\},\Vert \cdot \Vert _\{w\})$ if and only if, for all $f\in \mathcal \{B\}_\{w\}$, $(\frac\{1\}\{n\}\sum _\{k=1\}^\{n\}P^\{k\}f)_\{n\}$ contains a subsequence converging in $\mathcal \{B\}_\{w\}$ toΠf=∑di=1μi(f)vi, where the vi’s are non-negative bounded measurable functions on E and the μi’s are probability distributions on E. In particular, when the space of P-invariant functions in $\mathcal \{B\}_\{w\}$ is finite-dimensional, uniform ergodicity is equivalent to mean ergodicity.},
author = {Hervé, Loïc},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Markov kernel; quasi-compactness; mean ergodicity; geometrical ergodicity; supremum normed spaces},
language = {eng},
number = {6},
pages = {1090-1095},
publisher = {Gauthier-Villars},
title = {Quasi-compactness and mean ergodicity for Markov kernels acting on weighted supremum normed spaces},
url = {http://eudml.org/doc/78004},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Hervé, Loïc
TI - Quasi-compactness and mean ergodicity for Markov kernels acting on weighted supremum normed spaces
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 6
SP - 1090
EP - 1095
AB - Let P be a Markov kernel on a measurable space E with countably generated σ-algebra, let w:E→[1, +∞[ such that Pw≤Cw with C≥0, and let $\mathcal {B}_{w}$ be the space of measurable functions onE satisfying ‖f‖w=sup{w(x)−1|f(x)|, x∈E}&lt;+∞. We prove that Pis quasi-compact on $(\mathcal {B}_{w},\Vert \cdot \Vert _{w})$ if and only if, for all $f\in \mathcal {B}_{w}$, $(\frac{1}{n}\sum _{k=1}^{n}P^{k}f)_{n}$ contains a subsequence converging in $\mathcal {B}_{w}$ toΠf=∑di=1μi(f)vi, where the vi’s are non-negative bounded measurable functions on E and the μi’s are probability distributions on E. In particular, when the space of P-invariant functions in $\mathcal {B}_{w}$ is finite-dimensional, uniform ergodicity is equivalent to mean ergodicity.
LA - eng
KW - Markov kernel; quasi-compactness; mean ergodicity; geometrical ergodicity; supremum normed spaces
UR - http://eudml.org/doc/78004
ER -

References

top
  1. [1] A. Brunel and D. Revuz. Quelques applications probabilistes de la quasi-compacité. Ann. Inst. H. Poincaré, Sect. B (N.S.) 10 (1974) 301–337. Zbl0318.60064MR373008
  2. [2] N. Dunford and J. T. Schwartz. Linear Operators. Part. I: General Theory. Wiley, New York, 1958. Zbl0084.10402MR1009162
  3. [3] H. Hennion. Quasi-compactness and absolutely continuous kernels. Probab. Theory Related Fields. 139 (2007) 451–471. Zbl1128.60061MR2322704
  4. [4] H. Hennion. Quasi-compactness and absolutely continuous kernels. Applications to Markov chains (2006). Available at ArXiv:math.PR/0606680. Zbl1128.60061MR2322704
  5. [5] A. Hordijk and F. M. Spieksma. On ergodicity and recurrence properties of a Markov chain with an application to an open Jackson network. Adv. in Appl. Probab. 24 (1992) 343–376. Zbl0766.60085MR1167263
  6. [6] S. Horowitz. Transition probabilities and contractions of L∞. Z. Wahrsch. Verw. Gebiete 24 (1972) 263–274. Zbl0228.60028MR331516
  7. [7] U. Krengel. Ergodic Theorems. de Gruyter Studies in Mathematics, de Gruyter, Berlin, 1985. Zbl0575.28009MR797411
  8. [8] M. Lin. Quasi-compactness and uniform ergodicity of Markov operators. Ann. Inst. H. Poincaré, Sect. B (N.S.) 11 (1975) 345–354. Zbl0318.60065MR402007
  9. [9] M. Lin. Quasi-compactness and uniform ergodicity of positive operators. Israel J. Math. 29 (1978) 309–311. Zbl0374.47015MR493502
  10. [10] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Springer, London, 1993. Zbl0925.60001MR1287609
  11. [11] D. Revuz. Markov Chains. North-Holland, Amsterdam, 1975. Zbl0332.60045MR758799
  12. [12] H. H. Schaefer. Topological Vector Spaces. Springer, New York, 1971. Zbl0217.16002MR342978
  13. [13] H. H. Schaefer. Banach Lattices and Positive Operators. Springer, New York, 1974. Zbl0296.47023MR423039

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.