Quasi-compactness and mean ergodicity for Markov kernels acting on weighted supremum normed spaces
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 6, page 1090-1095
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topHervé, Loïc. "Quasi-compactness and mean ergodicity for Markov kernels acting on weighted supremum normed spaces." Annales de l'I.H.P. Probabilités et statistiques 44.6 (2008): 1090-1095. <http://eudml.org/doc/78004>.
@article{Hervé2008,
abstract = {Let P be a Markov kernel on a measurable space E with countably generated σ-algebra, let w:E→[1, +∞[ such that Pw≤Cw with C≥0, and let $\mathcal \{B\}_\{w\}$ be the space of measurable functions onE satisfying ‖f‖w=sup\{w(x)−1|f(x)|, x∈E\}<+∞. We prove that Pis quasi-compact on $(\mathcal \{B\}_\{w\},\Vert \cdot \Vert _\{w\})$ if and only if, for all $f\in \mathcal \{B\}_\{w\}$, $(\frac\{1\}\{n\}\sum _\{k=1\}^\{n\}P^\{k\}f)_\{n\}$ contains a subsequence converging in $\mathcal \{B\}_\{w\}$ toΠf=∑di=1μi(f)vi, where the vi’s are non-negative bounded measurable functions on E and the μi’s are probability distributions on E. In particular, when the space of P-invariant functions in $\mathcal \{B\}_\{w\}$ is finite-dimensional, uniform ergodicity is equivalent to mean ergodicity.},
author = {Hervé, Loïc},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Markov kernel; quasi-compactness; mean ergodicity; geometrical ergodicity; supremum normed spaces},
language = {eng},
number = {6},
pages = {1090-1095},
publisher = {Gauthier-Villars},
title = {Quasi-compactness and mean ergodicity for Markov kernels acting on weighted supremum normed spaces},
url = {http://eudml.org/doc/78004},
volume = {44},
year = {2008},
}
TY - JOUR
AU - Hervé, Loïc
TI - Quasi-compactness and mean ergodicity for Markov kernels acting on weighted supremum normed spaces
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 6
SP - 1090
EP - 1095
AB - Let P be a Markov kernel on a measurable space E with countably generated σ-algebra, let w:E→[1, +∞[ such that Pw≤Cw with C≥0, and let $\mathcal {B}_{w}$ be the space of measurable functions onE satisfying ‖f‖w=sup{w(x)−1|f(x)|, x∈E}<+∞. We prove that Pis quasi-compact on $(\mathcal {B}_{w},\Vert \cdot \Vert _{w})$ if and only if, for all $f\in \mathcal {B}_{w}$, $(\frac{1}{n}\sum _{k=1}^{n}P^{k}f)_{n}$ contains a subsequence converging in $\mathcal {B}_{w}$ toΠf=∑di=1μi(f)vi, where the vi’s are non-negative bounded measurable functions on E and the μi’s are probability distributions on E. In particular, when the space of P-invariant functions in $\mathcal {B}_{w}$ is finite-dimensional, uniform ergodicity is equivalent to mean ergodicity.
LA - eng
KW - Markov kernel; quasi-compactness; mean ergodicity; geometrical ergodicity; supremum normed spaces
UR - http://eudml.org/doc/78004
ER -
References
top- [1] A. Brunel and D. Revuz. Quelques applications probabilistes de la quasi-compacité. Ann. Inst. H. Poincaré, Sect. B (N.S.) 10 (1974) 301–337. Zbl0318.60064MR373008
- [2] N. Dunford and J. T. Schwartz. Linear Operators. Part. I: General Theory. Wiley, New York, 1958. Zbl0084.10402MR1009162
- [3] H. Hennion. Quasi-compactness and absolutely continuous kernels. Probab. Theory Related Fields. 139 (2007) 451–471. Zbl1128.60061MR2322704
- [4] H. Hennion. Quasi-compactness and absolutely continuous kernels. Applications to Markov chains (2006). Available at ArXiv:math.PR/0606680. Zbl1128.60061MR2322704
- [5] A. Hordijk and F. M. Spieksma. On ergodicity and recurrence properties of a Markov chain with an application to an open Jackson network. Adv. in Appl. Probab. 24 (1992) 343–376. Zbl0766.60085MR1167263
- [6] S. Horowitz. Transition probabilities and contractions of L∞. Z. Wahrsch. Verw. Gebiete 24 (1972) 263–274. Zbl0228.60028MR331516
- [7] U. Krengel. Ergodic Theorems. de Gruyter Studies in Mathematics, de Gruyter, Berlin, 1985. Zbl0575.28009MR797411
- [8] M. Lin. Quasi-compactness and uniform ergodicity of Markov operators. Ann. Inst. H. Poincaré, Sect. B (N.S.) 11 (1975) 345–354. Zbl0318.60065MR402007
- [9] M. Lin. Quasi-compactness and uniform ergodicity of positive operators. Israel J. Math. 29 (1978) 309–311. Zbl0374.47015MR493502
- [10] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Springer, London, 1993. Zbl0925.60001MR1287609
- [11] D. Revuz. Markov Chains. North-Holland, Amsterdam, 1975. Zbl0332.60045MR758799
- [12] H. H. Schaefer. Topological Vector Spaces. Springer, New York, 1971. Zbl0217.16002MR342978
- [13] H. H. Schaefer. Banach Lattices and Positive Operators. Springer, New York, 1974. Zbl0296.47023MR423039
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.