La σ-algèbre asymptotique d'une chaîne de Galton-Watson

J. C. Lootgieter

Annales de l'I.H.P. Probabilités et statistiques (1977)

  • Volume: 13, Issue: 3, page 193-230
  • ISSN: 0246-0203

How to cite

top

Lootgieter, J. C.. "La σ-algèbre asymptotique d'une chaîne de Galton-Watson." Annales de l'I.H.P. Probabilités et statistiques 13.3 (1977): 193-230. <http://eudml.org/doc/77064>.

@article{Lootgieter1977,
author = {Lootgieter, J. C.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {fre},
number = {3},
pages = {193-230},
publisher = {Gauthier-Villars},
title = {La σ-algèbre asymptotique d'une chaîne de Galton-Watson},
url = {http://eudml.org/doc/77064},
volume = {13},
year = {1977},
}

TY - JOUR
AU - Lootgieter, J. C.
TI - La σ-algèbre asymptotique d'une chaîne de Galton-Watson
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1977
PB - Gauthier-Villars
VL - 13
IS - 3
SP - 193
EP - 230
LA - fre
UR - http://eudml.org/doc/77064
ER -

References

top
  1. [1] A. Abrahamse, The tail field of a Markov Chain. Ann. Statistic, t. 40, 1969, p. 127-136. Zbl0181.44805MR248913
  2. [2] K.B. Athreya, A note on a functional equation arising in Galton-Watson branching processes. Journal Applied Probability, t. 8, 1971, p. 589-598. Zbl0254.60058MR292184
  3. [3] K.B. Athreya, On the absoluty continuity of the limit random variable in the supercritical Galton-Watson process. Proceedings of American Math. Society, t. 30, 1971, p. 563-565. Zbl0234.60097MR282421
  4. [4] K.B. Athreya, P. Ney, Branching processes. Berlin, Springer, 1972. Zbl0259.60002MR373040
  5. [5] H. Cohn, On the tail events of a Markov Chain. Z. Wahrscheinlichkeitstheorie verw. gebiete, t. 29, 1974, p. 65-72. Zbl0279.60051MR362495
  6. [6] S. Dubuc, Positive harmonic functions of branching processes. Proceedings of the American Math. Society, t. 21, 1969, p. 324-326. Zbl0176.47601MR251800
  7. [7] S. Dubuc, La fonction de Green d'un processus de Galton-Watson. Studia Math., t. 34, 1970, p. 69-87. Zbl0196.18802MR260042
  8. [8]. S. Dubuc, Problèmes relatifs à l'itération des fonctions suggérés par les processus en cascade. Ann. Inst. Fourier, Grenoble, t. 21, 1971, p. 171-251. Zbl0196.12801MR297025
  9. [9] I. Guelfand, D. Raikov, Q. Shilov, Commutative normed rings, Chelsea, 1964. 
  10. [10] T.E. Harris, The theory of branching processes. Berlin, Springer. Zbl0117.13002MR163361
  11. [11] C.C. Heyde, Extension of a result of Seneta for the supercritical Galton-Watson process. Ann. Math. Statistics, t. 41, 1970, p. 739-742. Zbl0195.19201MR254929
  12. [12] J.C. Lootgieter, Processus de Galton-Watson de moyenne 1. C. R. Acad. Sci., Paris, avril 1969, t. 268, Série A, p. 817-818. Zbl0269.60065MR242278
  13. [13] J. Neveu, Chaînes de Markov et théorie du potentiel. Annales Fac. Sci., Clermont-Ferrand, t. 24, 1964, p. 37-89. MR386031
  14. [14] D.J. Newmann, J.T. Schwartz, H.S. Shapiro, On generators of the Banach algebras l1 et L1(0, + ∞). Trans. Amer. Math. Soc., t. 107, 1963, p. 466-484. Zbl0117.09301MR150579
  15. [15] W. Rudin, Real and complex analysis. McGraw-Hill, 1966. Zbl0142.01701MR210528
  16. [16] W. Rudin, Fourier analysis on groups. Interscience publishers, 1967. 
  17. [17] E. Seneta, On recents theorems concerning the supercritical Galton-Watson process. Ann. Math. Statistics, t. 39, 1968, p. 2098-2102. Zbl0176.47603MR234530
  18. [18] E. Seneta, Functionals equations and the Galton-Watson process. Adv. Appl. Prob., t. 1, 1969, p. 1-42. Zbl0183.46105MR248917
  19. [19] E. Seneta, Regularly varying functions in the theory of simple branching processes. Vol. 6, n° 3, septembre 1974. Zbl0291.60043MR420894

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.