Sur l'espérance des variables aléatoires vectorielles

B. Bru; H. Heinich

Annales de l'I.H.P. Probabilités et statistiques (1980)

  • Volume: 16, Issue: 3, page 177-196
  • ISSN: 0246-0203

How to cite

top

Bru, B., and Heinich, H.. "Sur l'espérance des variables aléatoires vectorielles." Annales de l'I.H.P. Probabilités et statistiques 16.3 (1980): 177-196. <http://eudml.org/doc/77143>.

@article{Bru1980,
author = {Bru, B., Heinich, H.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {laws of large numbers; amarts},
language = {fre},
number = {3},
pages = {177-196},
publisher = {Gauthier-Villars},
title = {Sur l'espérance des variables aléatoires vectorielles},
url = {http://eudml.org/doc/77143},
volume = {16},
year = {1980},
}

TY - JOUR
AU - Bru, B.
AU - Heinich, H.
TI - Sur l'espérance des variables aléatoires vectorielles
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1980
PB - Gauthier-Villars
VL - 16
IS - 3
SP - 177
EP - 196
LA - fre
KW - laws of large numbers; amarts
UR - http://eudml.org/doc/77143
ER -

References

top
  1. [1] K.A. Astbury, Amarts indexed by directed sets. Ann. Probability, t. 6, n° 2, 1978, p. 267-278. Zbl0378.60017MR464394
  2. [2] A. Bellow, On vector-valued asymptotic martingales. Proc. Nat. Acad. Sci. U. S. A., t. 73, 1976, p. 1798-1799. Zbl0366.60067MR407966
  3. [3] A. Bellow, Les amarts uniformes. C. R. Acad. Sci. Paris, t. 284, série A, 1977, p. 1295. Zbl0359.60047MR445602
  4. [4] C. Bessaga, A. Pelczynski, On bases and unconditional convergence of series in Banach spaces. Studia Mathematica, t. 17, 1958, p. 151-164. Zbl0084.09805MR115069
  5. [5] G. Birkhoff, Integration of functions with values in a Banach Space. Trans. Amer. Math. Soc., t. 28, 1935, p. 357-378. Zbl0013.00803MR1501815JFM61.0234.01
  6. [6] N. Bourbaki, Éléments de Mathématiques, livre VI, Intégration, Chapitre 6, Hermann, Paris, 1959. MR124722
  7. [7] B. Bru et H. Heinich, C. R. Acad. Sc. Paris, t. 288, 1979, p. 65-68 et p. 363-366. Zbl0397.60009
  8. [8] R.V. Chacon et L. Sucheston, On convergence of vector-valued asymptotic martingales. Z. Wahrs. Verw. Gebiete, t. 33, 1975, p. 55-59. Zbl0297.60005MR394859
  9. [9] S.D. Chatterji, Vector-valued martingales and their applications. Lectures notes, n° 526, Springer-Verlag, Berlin-Heidelberg-New York, 1976, p. 33-51. Zbl0336.60049MR517905
  10. [10] A. Dvoretzky et C.A. Rogers, Absolute and unconditional convergence in normed linear spaces. Proc. Nat. Acad. Sci. U. S. A., t. 36, 1950, p. 192-197. Zbl0036.36303MR33975
  11. [11] G.A. Edgar et L. Sucheston, Amarts: a class of asymptotic martingales. A. Discrete parameter. J. Multiv. Anal., t. 6, 1976, p. 193-221. Zbl0336.60033MR413251
  12. [12] G.A. Edgar et L. Sucheston, The Riesz decomposition for vector-valued amarts. Z. Wahrs. Verw. Gebiete, t. 36, 1976, p. 85-92. Zbl0319.60025MR413252
  13. [13] N. Ghoussoub, Summability and vector-valued amarts, 1978, — J. Multiv.An al. (à paraître). Zbl0407.60043
  14. [14] H. Heinich, Thèse, Université P.-et-M.-Curie, Paris VI, 1975. 
  15. [15] M.E. Munroe, Absolute and unconditional convergence in Banach Space. Duke Math. J., t. 13, 1946, p. 351-365. Zbl0063.04135MR19222
  16. [16] J. Neveu, Bases mathématiques du Calcul des Probabilités, Masson, Paris, 1964. Zbl0137.11203MR198504
  17. [17] J. Neveu, Martingales à temps discrets. Masson, Paris, 1974. 
  18. [18] B.J. Pettis, On integration in vector space. Trans. Amer. Math. Soc., t. 44, 1938, p. 277-304. Zbl0019.41603MR1501970JFM64.0371.02
  19. [19] H.H. Schaefer, Banach lattices and positive operators. Springer-Verlag, Berlin, Heidelberg, New York, 1974. Zbl0296.47023MR423039
  20. [20] E. Thomas, L'intégration par rapport à une mesure de Radon vectorielle. Ann. Inst. Fourier, t. 20, 2, 1970, p. 55-191. Zbl0195.06101MR463396
  21. [21] E. Thomas, The Lebesgue-Nikodym theorem for vector valued Radon measures. Amer. Math. Soc., Memoir n° 139, 1974. Zbl0282.28004
  22. [22] E. Thomas, On some negative properties of the Pettis integral. Lecture Notes, n° 541. Springer-Verlag, Berlin, Heidelberg, New York, 1976, p. 131. 
  23. [23] J.J. Uhl, Pettis mean convergence of vector-valued asymptotic martingales. Z. Wahrs. Verw. Gebiete, t. 37, 1977, p. 291-295. Zbl0325.60046MR571670

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.