On subsets of L p and p -stable processes

M. Talagrand

Annales de l'I.H.P. Probabilités et statistiques (1989)

  • Volume: 25, Issue: 2, page 153-166
  • ISSN: 0246-0203

How to cite


Talagrand, M.. "On subsets of $L^p$ and $p$-stable processes." Annales de l'I.H.P. Probabilités et statistiques 25.2 (1989): 153-166. <http://eudml.org/doc/77344>.

author = {Talagrand, M.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {p-stable process; isometric embedding; existence of a majorizing measure; Haar measure},
language = {eng},
number = {2},
pages = {153-166},
publisher = {Gauthier-Villars},
title = {On subsets of $L^p$ and $p$-stable processes},
url = {http://eudml.org/doc/77344},
volume = {25},
year = {1989},

AU - Talagrand, M.
TI - On subsets of $L^p$ and $p$-stable processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1989
PB - Gauthier-Villars
VL - 25
IS - 2
SP - 153
EP - 166
LA - eng
KW - p-stable process; isometric embedding; existence of a majorizing measure; Haar measure
UR - http://eudml.org/doc/77344
ER -


  1. [1] N.T. Anderson, E. Giné and J. Zinn, The Central Limit Theorem under Local Conditions: the Case of Infinitively Divisible Limits without Gaussian Component. 
  2. [2] A. Araujo and E. Giné, The Central Limit Theorem for Real and Banach Valued Random Variables, Wiley, New York, 1980. Zbl0457.60001MR576407
  3. [3] J. Bretagnolle, D. Dacuna Castelle and J.L. Krivine, Lois stables et espaces Lp, Ann. Inst. Henri Poincarré, Vol. 2, 1966, pp. 231-259. Zbl0139.33501
  4. [4] M. Ledoux and M. Talagrand, Comparison Theorems, Random Geometry and Limit Theorems for Empirical Processes, Ann. Prolab. (to appear). Zbl0679.60048
  5. [5] R. Le Page, M. Woodroofe and J. Zinn, Convergence to a Stable Distribution via Order Statistics, Ann. Probab., Vol. 9, 1981, pp. 624-632. Zbl0465.60031MR624688
  6. [6] M. Marcus and G. Pisier, Characterizations of almost Surely Continuous p-stable Random Fourier Series and Strongly Stationary Processes, Acta. Math., Vol. 152, 1984, pp. 245-301. Zbl0547.60047MR741056
  7. [7] G. Pisier, Some Applications of the Metric Entropy Condition to Harmonic Analysis in Banach Spaces, Harmonic Analysis and Probability, Proceedings80-81; Lecture Notes in Math., No. 976, 1983, pp. 123-154, Springer Verlag. Zbl0517.60043MR717231
  8. [8] G. Pisier, Probabilistic Methods in the Geometry of Banach Space. Zbl0606.60008
  9. [9] M. Talagrand, Characterization of Almost Surely Continuous 1-Stable Random Fourier Series and Strongly Stationary Processes, Ann. Probab. (to appear). Zbl0707.60034MR1043938
  10. [10] M. Talagrand, Donsker Classes and Random Geometry, Ann. Probab., Vol. 15, 1987, pp. 1327-1338. Zbl0637.60040MR905334
  11. [11] M. Talagrand, Sample Boundedness of Stochastic Processes under Increment Conditions, Ann. Probab. (to appear). Zbl0703.60033MR1043935
  12. [12] M. Talagrand, The Structure of Sign Invariant GB-Sets and of Certain Gaussian Measures, Ann. Probab., 16, 1988, pp. 172-179. Zbl0637.60051MR920262
  13. [13] M. Talagrand, Donsker Classes of Sets, Probab. Th. Related Fields, 78, 1988, pp. 169- 191. Zbl0628.60027MR945108
  14. [14] M. Talagrand, Regularity of Gaussian Processes, Acta Math., Vol. 159, 1987, pp. 99- 149. Zbl0712.60044MR906527
  15. [15] M. Talagrand, Necessary Conditions for Sample Boundedness of p-Stable Processes, Ann. Probab., 16, 1988, pp. 1584-1595. Zbl0712.60045MR958204

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.