Asymptotic periodicity of some stochastically perturbed dynamical systems

T. Komorowski

Annales de l'I.H.P. Probabilités et statistiques (1992)

  • Volume: 28, Issue: 2, page 165-178
  • ISSN: 0246-0203

How to cite

top

Komorowski, T.. "Asymptotic periodicity of some stochastically perturbed dynamical systems." Annales de l'I.H.P. Probabilités et statistiques 28.2 (1992): 165-178. <http://eudml.org/doc/77428>.

@article{Komorowski1992,
author = {Komorowski, T.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {difference stochastic equation; asymptotic periodicity; asymptotic stability; model of cell cycle},
language = {eng},
number = {2},
pages = {165-178},
publisher = {Gauthier-Villars},
title = {Asymptotic periodicity of some stochastically perturbed dynamical systems},
url = {http://eudml.org/doc/77428},
volume = {28},
year = {1992},
}

TY - JOUR
AU - Komorowski, T.
TI - Asymptotic periodicity of some stochastically perturbed dynamical systems
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1992
PB - Gauthier-Villars
VL - 28
IS - 2
SP - 165
EP - 178
LA - eng
KW - difference stochastic equation; asymptotic periodicity; asymptotic stability; model of cell cycle
UR - http://eudml.org/doc/77428
ER -

References

top
  1. [1] S. Foguel, The Ergodic Theory of Markov Processes, van Nostrand, 1969. Zbl0282.60037MR261686
  2. [2] M.J. Kushner, Stochastic Stability and Control, Academic Press, New York, 1967. Zbl0244.93065MR216894
  3. [3] M.J. Kushner, Introduction to Stochastic Control Theory, Holt, Reinhart and Winston, New York, 1971. Zbl0293.93018MR280248
  4. [4] A. Lasota and J. Tyrcha, On the Strong Convergence to Equilibrium for Randomly Perturbed Dynamical Systems, An. Polon. Math. (to appear). Zbl0722.60068MR1110663
  5. [5] S. Meyn, Ergodic Theorems for Discrete Time Stochastic Systems Using a Stochastic Lyapunov Function, S.I.A.M. J. Control Optimization, Vol. 27, 1989, pp. 1409-1439. Zbl0681.60067MR1022436
  6. [6] A. Mokkadem, Propriétés de mélange des processus autorégressifs polynomiaux, Ann. Inst. Henri Poincaré, Vol. 26, 1990, pp. 219-260. Zbl0706.60040MR1063750
  7. [7] E. Nummelin, General Irreducible Markov Chains and Nonnegative Operators, Cambridge Univ. Press, 1984. Zbl0551.60066MR776608
  8. [8] A.G. Pakes, Some Conditions for Ergodicity and Recurrence of Markov chains, Operational Research, Vol. 17, 1969, pp. 1058-1061. Zbl0183.46902MR260035
  9. [9] M. Rosenblatt, Markov Processes: Structure and Asymptotic Behavior, Springer-Verlag, Berlin, Heidelberg, New York1971. Zbl0236.60002MR329037
  10. [10] J. Socala, On the Existence of Invariant Density for Markov Operators, Ann. Polon. Math., Vol. 48, 1988, pp. 51-56. Zbl0657.60089MR931389
  11. [11] J. Tyrcha, Asymptotic Stability in a Generalized Probabilistic/Deterministic Model of the Cell Cycle, J. Math. Biology, Vol. 26, 1988, pp. 465-475. Zbl0716.92017MR966316
  12. [12] U. Krengel, Ergodic Theorems, Walter de Gruyler, Berlin-New York, 1985. Zbl0575.28009MR797411
  13. [13] A. Lasota and M.C. Mackey, Probabilistic Properties of Deterministic Systems, Cambridge Univ. Press, 1985. Zbl0606.58002MR832868

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.