Propriétés de mélange des processus autorégressifs polynomiaux

Abdelkader Mokkadem

Annales de l'I.H.P. Probabilités et statistiques (1990)

  • Volume: 26, Issue: 2, page 219-260
  • ISSN: 0246-0203

How to cite

top

Mokkadem, Abdelkader. "Propriétés de mélange des processus autorégressifs polynomiaux." Annales de l'I.H.P. Probabilités et statistiques 26.2 (1990): 219-260. <http://eudml.org/doc/77378>.

@article{Mokkadem1990,
author = {Mokkadem, Abdelkader},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {mixing properties; polynomial autoregressive processes; continuity theorem; image of a measure; Harris recurrent; geometrically ergodic; geometrically absolutely regular; ARMA processes; bilinear processes},
language = {fre},
number = {2},
pages = {219-260},
publisher = {Gauthier-Villars},
title = {Propriétés de mélange des processus autorégressifs polynomiaux},
url = {http://eudml.org/doc/77378},
volume = {26},
year = {1990},
}

TY - JOUR
AU - Mokkadem, Abdelkader
TI - Propriétés de mélange des processus autorégressifs polynomiaux
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1990
PB - Gauthier-Villars
VL - 26
IS - 2
SP - 219
EP - 260
LA - fre
KW - mixing properties; polynomial autoregressive processes; continuity theorem; image of a measure; Harris recurrent; geometrically ergodic; geometrically absolutely regular; ARMA processes; bilinear processes
UR - http://eudml.org/doc/77378
ER -

References

top
  1. [1] H. Akaike, Markovian Representation of Stochastic Processes, Ann. Inst. Stat. Math., vol. 26, 1974, p. 363-387. Zbl0335.62058MR368355
  2. [2] R. Azencott et D. Dacunha-CASTELLE, Séries d'observations irrégulières, Masson, Paris, 1984. Zbl0546.62060MR746133
  3. [3] J.R. Blum, D.L. Hanson et L.H. Koopmans, On the Strong Law of Large Numbers for a Class of Stochastics Processes, Z. Wahr. Verw. Gebiete, vol. 2, 1963, p. 1 - 11. Zbl0117.35603MR161369
  4. [4] Th. Bröcker, Differentiable Germs and Catastrophes, Cambridge University Press, 1975. Zbl0302.58006MR494220
  5. [5] Y.A. Davydov, Mixing Conditions for Markow Chains, Theor. Prob. Appl., vol. 28, 1973, p. 313-328. Zbl0297.60031
  6. [6] H. Delfs et M. Knebush, Semi Algebraic Topology Over a Real Closed Fields I et II, Math. Zeit., vol. 177, 1981, p. 107-129 et vol. 178, 1981, p. 175-213. Zbl0447.14003
  7. [7] J. Dieudonné, Éléments d'analyse, t. III, Gauthier-Villars, Paris, 1970. Zbl0208.31802MR270377
  8. [8] J.L. Doob, Stochastic Processes, Wiley, New York, 1953. Zbl0053.26802MR58896
  9. [9] V.V. Gorodetski, On the Strong Mixing Property for Linear Sequences, Theor. Prob. Appl., vol. 22, 1977, p. 411-413. Zbl0377.60046
  10. [10] P. Hall et C.C. Heyde, Martingale Limit Theory and its Application, London Academic, 1980. Zbl0462.60045MR624435
  11. [11] R.M. Hardt, Semi Algebraic Local Triviality in Semi Algebraic Mappings, Am. J. Math., vol. 102, 1980, p. 291-302. Zbl0465.14012MR564475
  12. [12] H. Hironaka, Resolution of Singularities of an Algebraic Variety, I-II, Ann. Math., vol. 79, 1964, p. 109-326. Zbl0122.38603MR199184
  13. [13] I.A. Ibragimov et Y.V. Linnik, Independent and Stationary Sequences of Random Variables, Walth-Noordhoof Publishing Gröningen, 1974. Zbl0219.60027
  14. [14] I.A. Ibragimov et Y. Rozanov, Processus aléatoires gaussiens, MIR, Moscou, 1974. Zbl0291.60021
  15. [15] N. Jain et B. Jamison, Contributions to Doeblin's Theory of Markov Processes, Z. Wahr. Verw. Gebiete, vol. 8, 1967, p. 19-40. Zbl0201.50404MR221591
  16. [16] T.Y. Lam, An Introduction to Real Algebra, Rocky Mountain J. Math., vol. 14, 1984, p. 4. Zbl0577.14016MR773114
  17. [17] S. Lojasiewicz, Ensembles semi-analytiques, multigraphie de l'I.H.E.S., Bures-sur- Yvette, 1965. 
  18. [18] A. Mokkadem, Sur le mélange d'un processus ARMA vectoriel, C.R. Acad. Sci.Paris, t. 303, série I, 1986, p. 519-521. Zbl0604.62089MR865875
  19. [19] A. Mokkadem, Mixing Properties of ARMA Processes, Stoch. Proc. Appl., vol. 29, 1988, p. 309-315. Zbl0647.60042MR958507
  20. [20] A. Mokkadem, Sur un modèle autorégressif non linéaire, ergodicité et ergodicité géométrique, J.T.S.A., vol. 8, 1987, p. 195-204. Zbl0621.60076MR886138
  21. [21] A. Mokkadem, Conditions suffisantes d'existence et d'ergodicité géométrique des modè- les bilinéaires, C.R. Acad. Sci.Paris, t. 301, série I, 1985, p. 375-377. Zbl0579.60042MR808631
  22. [22] D. Mumford, Algebraic Geometry I, Complex Projective Varieties, Springer-Verlag, Berlin, 1976. Zbl0356.14002MR453732
  23. [23] J. Nash, Real Algebraic Manifolds, Ann. Math., vol. 56, 1952, p. 405-421. Zbl0048.38501MR50928
  24. [24] E. Nummelin et P. Tuominen, Geometric Ergodicity of Harris Recurrent Markov Chains, Stoch. Proc. Appl., vol. 12, 1982, p. 187-202. Zbl0484.60056MR651903
  25. [25] S. Orey, Limit Theorems for Markov Chain Transition Probabilities, Van Nostrand, London, 1971. Zbl0295.60054MR324774
  26. [26] T.D. Pham et L.T. Tran, Some Mixing Properties of Time Series Models, Stoch. Proc. Appl., vol. 19, 1986, p. 297-303. Zbl0564.62068MR787587
  27. [27] T.D. Pham, Bilinear Markovian Representation and Bilinear Models, Stoch. Proc. Appl., vol. 20, 1985, p. 295-306. Zbl0588.62162MR808163
  28. [28] M.Q. Pham, Introduction à la géométrie des variétés différentiables, Dunod, Paris, 1969. Zbl0209.53101MR242080
  29. [29] D. Revuz, Markov Chains, North Holland, Amsterdam, 1984. Zbl0539.60073MR758799
  30. [30] M. Rosenblatt, Markov Processes, Structure and Asymptotic Behaviour, Springer, Berlin, 1971. Zbl0236.60002MR329037
  31. [31] M. Rosenblatt, A Central Limit Theorem and a Strong Mixing Condition, Proc. Nat. Acad. Sci. U.S.A., vol. 42, 1956, p. 43-47. Zbl0070.13804MR74711
  32. [32] A. Seidenberg, A New Decision Method for Elementary Algebra, Ann. Math., vol. 2, 1952, p. 365-374. Zbl0056.01804MR63994
  33. [33] H. Takahata, L∞ Bounds for Asymptotic Normality of Weakly Dependent Summands Using Stein's Methods, Ann. Prob., vol. 9, 1981, p. 676-683. Zbl0465.60033MR624695
  34. [34] A.N. Tikhomirov, On the Convergence Rate in the Central Limit Theorem for Weakly Dependent Random Variables, Theor. Prob. Appl., vol. 25, 1980, p. 790-809. Zbl0471.60030MR595140
  35. [35] R.L. Tweedie, Sufficient Conditions for Ergodicity and Recurrence of Markov Chains, Stoch. Proc. Appl., vol. 3, 1975, p. 385-403. Zbl0315.60035MR436324
  36. [36] R.L. Tweedie, The Existence of Moments for Stationnary Markov Chains, J. Appl. Prob., vol. 20, 1983, p. 191-196. Zbl0513.60067MR688095
  37. [37] F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Singer, MIT, 1971. Zbl0241.58001MR295244
  38. [38] H. Whitney, Elementary Structure of Real Algebraic Varieties, Ann. Math., vol. 66, 1957, p. 545-556. Zbl0078.13403MR95844
  39. [39] C.S. Withers, Conditions for Linear Processes to be Strong Mixing, Z. Wahr. Verw. Gebiete, vol. 57, 1981, p.481-494. Zbl0465.60032MR631371
  40. [40] R. Yokoyama, Moments Bounds for Stationnary Mixing Sequences, Z. Wahr. Verw. Gebiete, vol. 52, 1980, p.45-57. Zbl0407.60002MR568258
  41. [41] Y. Rozanov, Stationary Random Processes, Holden Day Series, 1967. Zbl0152.16302MR214134
  42. [42] E. Becker, On the Real Spectrum of a Ring and its Applications to Semi Algebraic Geometry, Bull. A.M.S., vol. 15, 1986, p. 19-60. Zbl0634.14016MR838786

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.