Propriétés de mélange des processus autorégressifs polynomiaux
Annales de l'I.H.P. Probabilités et statistiques (1990)
- Volume: 26, Issue: 2, page 219-260
- ISSN: 0246-0203
Access Full Article
topHow to cite
topMokkadem, Abdelkader. "Propriétés de mélange des processus autorégressifs polynomiaux." Annales de l'I.H.P. Probabilités et statistiques 26.2 (1990): 219-260. <http://eudml.org/doc/77378>.
@article{Mokkadem1990,
author = {Mokkadem, Abdelkader},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {mixing properties; polynomial autoregressive processes; continuity theorem; image of a measure; Harris recurrent; geometrically ergodic; geometrically absolutely regular; ARMA processes; bilinear processes},
language = {fre},
number = {2},
pages = {219-260},
publisher = {Gauthier-Villars},
title = {Propriétés de mélange des processus autorégressifs polynomiaux},
url = {http://eudml.org/doc/77378},
volume = {26},
year = {1990},
}
TY - JOUR
AU - Mokkadem, Abdelkader
TI - Propriétés de mélange des processus autorégressifs polynomiaux
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1990
PB - Gauthier-Villars
VL - 26
IS - 2
SP - 219
EP - 260
LA - fre
KW - mixing properties; polynomial autoregressive processes; continuity theorem; image of a measure; Harris recurrent; geometrically ergodic; geometrically absolutely regular; ARMA processes; bilinear processes
UR - http://eudml.org/doc/77378
ER -
References
top- [1] H. Akaike, Markovian Representation of Stochastic Processes, Ann. Inst. Stat. Math., vol. 26, 1974, p. 363-387. Zbl0335.62058MR368355
- [2] R. Azencott et D. Dacunha-CASTELLE, Séries d'observations irrégulières, Masson, Paris, 1984. Zbl0546.62060MR746133
- [3] J.R. Blum, D.L. Hanson et L.H. Koopmans, On the Strong Law of Large Numbers for a Class of Stochastics Processes, Z. Wahr. Verw. Gebiete, vol. 2, 1963, p. 1 - 11. Zbl0117.35603MR161369
- [4] Th. Bröcker, Differentiable Germs and Catastrophes, Cambridge University Press, 1975. Zbl0302.58006MR494220
- [5] Y.A. Davydov, Mixing Conditions for Markow Chains, Theor. Prob. Appl., vol. 28, 1973, p. 313-328. Zbl0297.60031
- [6] H. Delfs et M. Knebush, Semi Algebraic Topology Over a Real Closed Fields I et II, Math. Zeit., vol. 177, 1981, p. 107-129 et vol. 178, 1981, p. 175-213. Zbl0447.14003
- [7] J. Dieudonné, Éléments d'analyse, t. III, Gauthier-Villars, Paris, 1970. Zbl0208.31802MR270377
- [8] J.L. Doob, Stochastic Processes, Wiley, New York, 1953. Zbl0053.26802MR58896
- [9] V.V. Gorodetski, On the Strong Mixing Property for Linear Sequences, Theor. Prob. Appl., vol. 22, 1977, p. 411-413. Zbl0377.60046
- [10] P. Hall et C.C. Heyde, Martingale Limit Theory and its Application, London Academic, 1980. Zbl0462.60045MR624435
- [11] R.M. Hardt, Semi Algebraic Local Triviality in Semi Algebraic Mappings, Am. J. Math., vol. 102, 1980, p. 291-302. Zbl0465.14012MR564475
- [12] H. Hironaka, Resolution of Singularities of an Algebraic Variety, I-II, Ann. Math., vol. 79, 1964, p. 109-326. Zbl0122.38603MR199184
- [13] I.A. Ibragimov et Y.V. Linnik, Independent and Stationary Sequences of Random Variables, Walth-Noordhoof Publishing Gröningen, 1974. Zbl0219.60027
- [14] I.A. Ibragimov et Y. Rozanov, Processus aléatoires gaussiens, MIR, Moscou, 1974. Zbl0291.60021
- [15] N. Jain et B. Jamison, Contributions to Doeblin's Theory of Markov Processes, Z. Wahr. Verw. Gebiete, vol. 8, 1967, p. 19-40. Zbl0201.50404MR221591
- [16] T.Y. Lam, An Introduction to Real Algebra, Rocky Mountain J. Math., vol. 14, 1984, p. 4. Zbl0577.14016MR773114
- [17] S. Lojasiewicz, Ensembles semi-analytiques, multigraphie de l'I.H.E.S., Bures-sur- Yvette, 1965.
- [18] A. Mokkadem, Sur le mélange d'un processus ARMA vectoriel, C.R. Acad. Sci.Paris, t. 303, série I, 1986, p. 519-521. Zbl0604.62089MR865875
- [19] A. Mokkadem, Mixing Properties of ARMA Processes, Stoch. Proc. Appl., vol. 29, 1988, p. 309-315. Zbl0647.60042MR958507
- [20] A. Mokkadem, Sur un modèle autorégressif non linéaire, ergodicité et ergodicité géométrique, J.T.S.A., vol. 8, 1987, p. 195-204. Zbl0621.60076MR886138
- [21] A. Mokkadem, Conditions suffisantes d'existence et d'ergodicité géométrique des modè- les bilinéaires, C.R. Acad. Sci.Paris, t. 301, série I, 1985, p. 375-377. Zbl0579.60042MR808631
- [22] D. Mumford, Algebraic Geometry I, Complex Projective Varieties, Springer-Verlag, Berlin, 1976. Zbl0356.14002MR453732
- [23] J. Nash, Real Algebraic Manifolds, Ann. Math., vol. 56, 1952, p. 405-421. Zbl0048.38501MR50928
- [24] E. Nummelin et P. Tuominen, Geometric Ergodicity of Harris Recurrent Markov Chains, Stoch. Proc. Appl., vol. 12, 1982, p. 187-202. Zbl0484.60056MR651903
- [25] S. Orey, Limit Theorems for Markov Chain Transition Probabilities, Van Nostrand, London, 1971. Zbl0295.60054MR324774
- [26] T.D. Pham et L.T. Tran, Some Mixing Properties of Time Series Models, Stoch. Proc. Appl., vol. 19, 1986, p. 297-303. Zbl0564.62068MR787587
- [27] T.D. Pham, Bilinear Markovian Representation and Bilinear Models, Stoch. Proc. Appl., vol. 20, 1985, p. 295-306. Zbl0588.62162MR808163
- [28] M.Q. Pham, Introduction à la géométrie des variétés différentiables, Dunod, Paris, 1969. Zbl0209.53101MR242080
- [29] D. Revuz, Markov Chains, North Holland, Amsterdam, 1984. Zbl0539.60073MR758799
- [30] M. Rosenblatt, Markov Processes, Structure and Asymptotic Behaviour, Springer, Berlin, 1971. Zbl0236.60002MR329037
- [31] M. Rosenblatt, A Central Limit Theorem and a Strong Mixing Condition, Proc. Nat. Acad. Sci. U.S.A., vol. 42, 1956, p. 43-47. Zbl0070.13804MR74711
- [32] A. Seidenberg, A New Decision Method for Elementary Algebra, Ann. Math., vol. 2, 1952, p. 365-374. Zbl0056.01804MR63994
- [33] H. Takahata, L∞ Bounds for Asymptotic Normality of Weakly Dependent Summands Using Stein's Methods, Ann. Prob., vol. 9, 1981, p. 676-683. Zbl0465.60033MR624695
- [34] A.N. Tikhomirov, On the Convergence Rate in the Central Limit Theorem for Weakly Dependent Random Variables, Theor. Prob. Appl., vol. 25, 1980, p. 790-809. Zbl0471.60030MR595140
- [35] R.L. Tweedie, Sufficient Conditions for Ergodicity and Recurrence of Markov Chains, Stoch. Proc. Appl., vol. 3, 1975, p. 385-403. Zbl0315.60035MR436324
- [36] R.L. Tweedie, The Existence of Moments for Stationnary Markov Chains, J. Appl. Prob., vol. 20, 1983, p. 191-196. Zbl0513.60067MR688095
- [37] F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Singer, MIT, 1971. Zbl0241.58001MR295244
- [38] H. Whitney, Elementary Structure of Real Algebraic Varieties, Ann. Math., vol. 66, 1957, p. 545-556. Zbl0078.13403MR95844
- [39] C.S. Withers, Conditions for Linear Processes to be Strong Mixing, Z. Wahr. Verw. Gebiete, vol. 57, 1981, p.481-494. Zbl0465.60032MR631371
- [40] R. Yokoyama, Moments Bounds for Stationnary Mixing Sequences, Z. Wahr. Verw. Gebiete, vol. 52, 1980, p.45-57. Zbl0407.60002MR568258
- [41] Y. Rozanov, Stationary Random Processes, Holden Day Series, 1967. Zbl0152.16302MR214134
- [42] E. Becker, On the Real Spectrum of a Ring and its Applications to Semi Algebraic Geometry, Bull. A.M.S., vol. 15, 1986, p. 19-60. Zbl0634.14016MR838786
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.