The multifractal structure of super-brownian motion
Edwin A. Perkins; S. James Taylor
Annales de l'I.H.P. Probabilités et statistiques (1998)
- Volume: 34, Issue: 1, page 97-138
- ISSN: 0246-0203
Access Full Article
topHow to cite
topPerkins, Edwin A., and Taylor, S. James. "The multifractal structure of super-brownian motion." Annales de l'I.H.P. Probabilités et statistiques 34.1 (1998): 97-138. <http://eudml.org/doc/77597>.
@article{Perkins1998,
author = {Perkins, Edwin A., Taylor, S. James},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {multifractal spectrum; mass exponents; super-Brownian motion; Hausdorff dimension},
language = {eng},
number = {1},
pages = {97-138},
publisher = {Gauthier-Villars},
title = {The multifractal structure of super-brownian motion},
url = {http://eudml.org/doc/77597},
volume = {34},
year = {1998},
}
TY - JOUR
AU - Perkins, Edwin A.
AU - Taylor, S. James
TI - The multifractal structure of super-brownian motion
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1998
PB - Gauthier-Villars
VL - 34
IS - 1
SP - 97
EP - 138
LA - eng
KW - multifractal spectrum; mass exponents; super-Brownian motion; Hausdorff dimension
UR - http://eudml.org/doc/77597
ER -
References
top- [BEP] M.T. Barlow, S.N. Evans and E.A. Perkins, Collision Local Times and Measure-valued Processes, Can. J. Math., Vol. 43, 1991, pp. 897-938. Zbl0765.60044MR1138572
- [B] A.S. Besicovich, A general form of the covering principle and relative differentiation of additive functions, Proc. Camb. Phil. Soc., Vol. 41, 1945, pp. 103-110. Zbl0063.00352MR12325
- [C] C.D. Cutler, Measure disintegrations with respect to a σ-stable monotone index and the pointwise representation of packing dimension, Rend del Circolo Math di Palermo, Vol. 28, 1992, pp. 319-340. Zbl0762.28004MR1183059
- [D1] D.A. Dawson, Infinitely divisible random measure and superprocesses, inProc. 1990 Workshop on Stochastic Analysis and Related Topics, 1992, Silivri, Turkey. MR1203373
- [D2] D.A. DawsonMeasure-valued Markov Processes, Ecole d'Eté de Probabilités de Saint-FlourXXI, Lecture Notes in Math., Vol. 1541, 1993, pp. 1-260, Springer, Berlin. Zbl0799.60080MR1242575
- [DIP] D.A. Dawson, I. Iscoe and E.A. Perkins, Super-Brownian motion: Path properties and hitting probabilities, Probab. Theory Related Fields, Vol. 83, 1989, pp. 135-206. Zbl0692.60063MR1012498
- [DP] D.A. Dawson and E.A. Perkins, Historical Processes, Memoirs of the Amer. Math. Soc., Vol. 93, no. 454, 1991, 179 p. Zbl0754.60062MR1079034
- [EP] S.N. Evans and E.A. Perkins, Absolute continuity results for superprocesses with some applications, Trans. Amer. Math. Soc., Vol. 325, 1991, pp. 661-681. Zbl0733.60062MR1012522
- [F] K.J. Falconer, Fractal Geometry: mathematics foundations and applications, Wiley, 1990, New York. Zbl0689.28003MR1102677
- [Fr] O. Frostman, Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Medd Lunds Univ. Math. Sem., Vol. 3, 1935, pp. 1-188. Zbl0013.06302JFM61.1262.02
- [Ha] T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia and B.I. Shraiman, Fractal measures and their singularities, Phys. Rev., Vol. A33, 1986, pp. 1141-1151. Zbl1184.37028MR823474
- [K] F.B. Knight, Essentials of Brownian Motion and Diffusion, American Math. Soc., 1981, Providence. Zbl0458.60002MR613983
- [LG1] J.F. Le Gall, A class of path-valued Markov processes and its applications to superprocesses, Probab. Theory Related Fields, Vol. 95, 1993, pp. 25-46. Zbl0794.60076MR1207305
- [LG2] J.F. Le Gall, A path-valued Markov process and its connection with partial differential equations, Proceedings of the First European Congress of Mathematics, (1994)a, pp. 185-212, Birkhäuser, Boston. Zbl0812.60058MR1341844
- [LG3] J.F. Le Gall, A lemma on super-Brownian motion with some applications, Festschift in Honor of E.B. Dynkin (M. Friedlin, ed.), 1994b, pp. 237-251, Birkhäuser, Boston. Zbl0812.60066MR1311723
- [LPT] J.F. Le Gall, E.A. Perkins and S.J. Taylor, The packing measure of the support of super-Brownian motion, Stoch. Proc. Appl., Vol. 59, 1995, pp. 1-20. Zbl0848.60078MR1350253
- [O] L. Olsen, A multifractal formalism, Advances in Mathematics, Vol. 116, 1995, pp. 82-195. Zbl0841.28012MR1361481
- [P1] E.A. Perkins, The Hausdorff measure of the closed support of super-Brownian motion, Ann. Inst. H. Poincaré, Vol. 25, 1989, pp. 205-224. Zbl0679.60053MR1001027
- [P2] E.A. Perkins, Measure-valued branching diffusions with spatial interactions, Probab. Theory Related Fields, Vol. 94, 1992, pp. 189-245. Zbl0767.60044MR1191108
- [PT] E.A. Perkins and S.J. Taylor, Uniform measure results for the image of subsets under Brownian motion, Probab. Theory Related Fields , Vol. 76, 1987, pp. 257-289. Zbl0613.60071MR912654
- [T] S.J. Taylor, On the connection between generalized capacities and Hausdorff measures, Proc. Cambridge Philos. Soc., Vol. 57, 1961, pp. 524-531. Zbl0106.26802MR133420
- [TT] S.J. Taylor and C. Tricot, Packing measure and its evaluation for a Brownian path, Trans. Amer. Math. Soc., Vol. 288, 1985, pp. 679-699. Zbl0537.28003MR776398
- [Tr] R. Tribe, The connected components of the closed support of super-Brownian motion, Probab. Theory Related Fields, Vol. 89, 1991, pp. 75-87. Zbl0722.60084MR1109475
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.