The multifractal structure of super-brownian motion

Edwin A. Perkins; S. James Taylor

Annales de l'I.H.P. Probabilités et statistiques (1998)

  • Volume: 34, Issue: 1, page 97-138
  • ISSN: 0246-0203

How to cite

top

Perkins, Edwin A., and Taylor, S. James. "The multifractal structure of super-brownian motion." Annales de l'I.H.P. Probabilités et statistiques 34.1 (1998): 97-138. <http://eudml.org/doc/77597>.

@article{Perkins1998,
author = {Perkins, Edwin A., Taylor, S. James},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {multifractal spectrum; mass exponents; super-Brownian motion; Hausdorff dimension},
language = {eng},
number = {1},
pages = {97-138},
publisher = {Gauthier-Villars},
title = {The multifractal structure of super-brownian motion},
url = {http://eudml.org/doc/77597},
volume = {34},
year = {1998},
}

TY - JOUR
AU - Perkins, Edwin A.
AU - Taylor, S. James
TI - The multifractal structure of super-brownian motion
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1998
PB - Gauthier-Villars
VL - 34
IS - 1
SP - 97
EP - 138
LA - eng
KW - multifractal spectrum; mass exponents; super-Brownian motion; Hausdorff dimension
UR - http://eudml.org/doc/77597
ER -

References

top
  1. [BEP] M.T. Barlow, S.N. Evans and E.A. Perkins, Collision Local Times and Measure-valued Processes, Can. J. Math., Vol. 43, 1991, pp. 897-938. Zbl0765.60044MR1138572
  2. [B] A.S. Besicovich, A general form of the covering principle and relative differentiation of additive functions, Proc. Camb. Phil. Soc., Vol. 41, 1945, pp. 103-110. Zbl0063.00352MR12325
  3. [C] C.D. Cutler, Measure disintegrations with respect to a σ-stable monotone index and the pointwise representation of packing dimension, Rend del Circolo Math di Palermo, Vol. 28, 1992, pp. 319-340. Zbl0762.28004MR1183059
  4. [D1] D.A. Dawson, Infinitely divisible random measure and superprocesses, inProc. 1990 Workshop on Stochastic Analysis and Related Topics, 1992, Silivri, Turkey. MR1203373
  5. [D2] D.A. DawsonMeasure-valued Markov Processes, Ecole d'Eté de Probabilités de Saint-FlourXXI, Lecture Notes in Math., Vol. 1541, 1993, pp. 1-260, Springer, Berlin. Zbl0799.60080MR1242575
  6. [DIP] D.A. Dawson, I. Iscoe and E.A. Perkins, Super-Brownian motion: Path properties and hitting probabilities, Probab. Theory Related Fields, Vol. 83, 1989, pp. 135-206. Zbl0692.60063MR1012498
  7. [DP] D.A. Dawson and E.A. Perkins, Historical Processes, Memoirs of the Amer. Math. Soc., Vol. 93, no. 454, 1991, 179 p. Zbl0754.60062MR1079034
  8. [EP] S.N. Evans and E.A. Perkins, Absolute continuity results for superprocesses with some applications, Trans. Amer. Math. Soc., Vol. 325, 1991, pp. 661-681. Zbl0733.60062MR1012522
  9. [F] K.J. Falconer, Fractal Geometry: mathematics foundations and applications, Wiley, 1990, New York. Zbl0689.28003MR1102677
  10. [Fr] O. Frostman, Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Medd Lunds Univ. Math. Sem., Vol. 3, 1935, pp. 1-188. Zbl0013.06302JFM61.1262.02
  11. [Ha] T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia and B.I. Shraiman, Fractal measures and their singularities, Phys. Rev., Vol. A33, 1986, pp. 1141-1151. Zbl1184.37028MR823474
  12. [K] F.B. Knight, Essentials of Brownian Motion and Diffusion, American Math. Soc., 1981, Providence. Zbl0458.60002MR613983
  13. [LG1] J.F. Le Gall, A class of path-valued Markov processes and its applications to superprocesses, Probab. Theory Related Fields, Vol. 95, 1993, pp. 25-46. Zbl0794.60076MR1207305
  14. [LG2] J.F. Le Gall, A path-valued Markov process and its connection with partial differential equations, Proceedings of the First European Congress of Mathematics, (1994)a, pp. 185-212, Birkhäuser, Boston. Zbl0812.60058MR1341844
  15. [LG3] J.F. Le Gall, A lemma on super-Brownian motion with some applications, Festschift in Honor of E.B. Dynkin (M. Friedlin, ed.), 1994b, pp. 237-251, Birkhäuser, Boston. Zbl0812.60066MR1311723
  16. [LPT] J.F. Le Gall, E.A. Perkins and S.J. Taylor, The packing measure of the support of super-Brownian motion, Stoch. Proc. Appl., Vol. 59, 1995, pp. 1-20. Zbl0848.60078MR1350253
  17. [O] L. Olsen, A multifractal formalism, Advances in Mathematics, Vol. 116, 1995, pp. 82-195. Zbl0841.28012MR1361481
  18. [P1] E.A. Perkins, The Hausdorff measure of the closed support of super-Brownian motion, Ann. Inst. H. Poincaré, Vol. 25, 1989, pp. 205-224. Zbl0679.60053MR1001027
  19. [P2] E.A. Perkins, Measure-valued branching diffusions with spatial interactions, Probab. Theory Related Fields, Vol. 94, 1992, pp. 189-245. Zbl0767.60044MR1191108
  20. [PT] E.A. Perkins and S.J. Taylor, Uniform measure results for the image of subsets under Brownian motion, Probab. Theory Related Fields , Vol. 76, 1987, pp. 257-289. Zbl0613.60071MR912654
  21. [T] S.J. Taylor, On the connection between generalized capacities and Hausdorff measures, Proc. Cambridge Philos. Soc., Vol. 57, 1961, pp. 524-531. Zbl0106.26802MR133420
  22. [TT] S.J. Taylor and C. Tricot, Packing measure and its evaluation for a Brownian path, Trans. Amer. Math. Soc., Vol. 288, 1985, pp. 679-699. Zbl0537.28003MR776398
  23. [Tr] R. Tribe, The connected components of the closed support of super-Brownian motion, Probab. Theory Related Fields, Vol. 89, 1991, pp. 75-87. Zbl0722.60084MR1109475

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.