The average density of super-brownian motion
Annales de l'I.H.P. Probabilités et statistiques (2001)
- Volume: 37, Issue: 1, page 71-100
- ISSN: 0246-0203
Access Full Article
topHow to cite
topMörters, Peter. "The average density of super-brownian motion." Annales de l'I.H.P. Probabilités et statistiques 37.1 (2001): 71-100. <http://eudml.org/doc/77684>.
@article{Mörters2001,
author = {Mörters, Peter},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {average density; super-Brownian motion; occupation measure; Hausdorff dimension; Hausdorff dimension gauge},
language = {eng},
number = {1},
pages = {71-100},
publisher = {Elsevier},
title = {The average density of super-brownian motion},
url = {http://eudml.org/doc/77684},
volume = {37},
year = {2001},
}
TY - JOUR
AU - Mörters, Peter
TI - The average density of super-brownian motion
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2001
PB - Elsevier
VL - 37
IS - 1
SP - 71
EP - 100
LA - eng
KW - average density; super-Brownian motion; occupation measure; Hausdorff dimension; Hausdorff dimension gauge
UR - http://eudml.org/doc/77684
ER -
References
top- 1 T Bedford, A.M Fisher, Analogues of the Lebesgue density theorem for fractal sets of reals and integers, Proc. London Math. Soc. (3)Vol. 64 (1992) 95-124. Zbl0706.28009MR1132856
- 2 D.A Dawson, Measure-valued Markov processes, in: École d'Été de Probabilités de Saint Flour XXI, Lecture Notes in Math., Vol. 1541, Springer, Berlin, 1993, pp. 1-260. Zbl0799.60080MR1242575
- 3 D.A Dawson, E.A Perkins, Historical Processes, Mem. Amer. Math. Soc., Vol. 93, 1991. Zbl0754.60062MR1079034
- 4 S.N Evans, E.A Perkins, Absolute continuity results for superprocesses with some applications, Trans. Amer. Math. Soc.Vol. 325 (1991) 661-681. Zbl0733.60062MR1012522
- 5 K.J Falconer, Wavelet transforms and order-two densities of fractals, J. Statist. Phys.Vol. 67 (1992) 781-793. Zbl0893.28006MR1171150
- 6 K.J Falconer, Techniques in Fractal Geometry, Wiley, Chichester, 1997. Zbl0869.28003MR1449135
- 7 K.J Falconer, Y Xiao, Average densities of the image and zero set of stable processes, Stochastic Process. Appl.Vol. 55 (1995) 271-283. Zbl0819.60038MR1313023
- 8 S Graf, On Bandt's tangential distribution for self-similar measures, Mh. Math.Vol. 120 (1995) 223-246. Zbl0841.28011MR1363139
- 9 J.F Le Gall, Brownian excursions, trees and measure-valued branching processes, Ann. Probab.Vol. 19 (1991) 1399-1439. Zbl0753.60078MR1127710
- 10 J.F Le Gall, A class of path-valued Markov processes and its applications to superprocesses, Probab. Theory Related FieldsVol. 95 (1993) 25-46. Zbl0794.60076MR1207305
- 11 J.F Le Gall, E.A Perkins, The Hausdorff measure of the support of two-dimensional super-Brownian motion, Ann. Probab.Vol. 23 (1995) 1719-1747. Zbl0856.60055MR1379165
- 12 J.F Le Gall, E.A Perkins, S.J Taylor, The packing measure of the support of super-Brownian motion, Stochastic Process. Appl.Vol. 59 (1995) 1-20. Zbl0848.60078MR1350253
- 13 L Leistritz, Geometrische und analytische Eigenschaften singulärer Strukturen in Rd, Ph.D. Dissertation, University of Jena, 1994.
- 14 J.M Marstrand, Order-two density and the strong law of large numbers, MathematikaVol. 43 (1996) 1-22. Zbl0859.28002MR1401704
- 15 P Mattila, The Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, Cambridge, 1995. Zbl0911.28005MR1333890
- 16 P Mörters, Average densities and linear rectifiability of measures, MathematikaVol. 44 (1997) 313-324. Zbl0886.28003MR1600545
- 17 P Mörters, The average density of the path of planar Brownian motion, Stochastic Process. Appl.Vol. 74 (1998) 133-149. Zbl0937.60031MR1624025
- 18 P Mörters, N.R Shieh, Small scale limit theorems for the intersection local time of Brownian motion, El. J. Probab.Vol. 4 (1999) 1-23, Paper 9. Zbl0937.60032MR1690313
- 19 N Patzschke, M Zähle, Fractional differentiation in the self–affine case III. The density of the Cantor set, Proc. Amer. Math. Soc.Vol. 117 (1993) 132-144. Zbl0854.60009MR1143022
- 20 N Patzschke, M Zähle, Fractional differentiation in the self–affine case IV. Random measures, Stochastics Stochastics Rep.Vol. 49 (1994) 87-98. Zbl0827.60035MR1784439
- 21 E.A Perkins, S.J Taylor, The multifractal structure of super-Brownian motion, Ann. Inst. H. PoincaréVol. 34 (1998) 97-138. Zbl0905.60031MR1617713
- 22 D Preiss, Geometry of measures in Rn: Distribution, rectifiability and densities, Ann. Math.Vol. 125 (1987) 537-643. Zbl0627.28008MR890162
- 23 R Tribe, The connected components of the closed support of super-Brownian motion, Probab. Theory Related FieldsVol. 89 (1991) 75-87. Zbl0722.60084MR1109475
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.