The average density of super-brownian motion

Peter Mörters

Annales de l'I.H.P. Probabilités et statistiques (2001)

  • Volume: 37, Issue: 1, page 71-100
  • ISSN: 0246-0203

How to cite

top

Mörters, Peter. "The average density of super-brownian motion." Annales de l'I.H.P. Probabilités et statistiques 37.1 (2001): 71-100. <http://eudml.org/doc/77684>.

@article{Mörters2001,
author = {Mörters, Peter},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {average density; super-Brownian motion; occupation measure; Hausdorff dimension; Hausdorff dimension gauge},
language = {eng},
number = {1},
pages = {71-100},
publisher = {Elsevier},
title = {The average density of super-brownian motion},
url = {http://eudml.org/doc/77684},
volume = {37},
year = {2001},
}

TY - JOUR
AU - Mörters, Peter
TI - The average density of super-brownian motion
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2001
PB - Elsevier
VL - 37
IS - 1
SP - 71
EP - 100
LA - eng
KW - average density; super-Brownian motion; occupation measure; Hausdorff dimension; Hausdorff dimension gauge
UR - http://eudml.org/doc/77684
ER -

References

top
  1. 1 T Bedford, A.M Fisher, Analogues of the Lebesgue density theorem for fractal sets of reals and integers, Proc. London Math. Soc. (3)Vol. 64 (1992) 95-124. Zbl0706.28009MR1132856
  2. 2 D.A Dawson, Measure-valued Markov processes, in: École d'Été de Probabilités de Saint Flour XXI, Lecture Notes in Math., Vol. 1541, Springer, Berlin, 1993, pp. 1-260. Zbl0799.60080MR1242575
  3. 3 D.A Dawson, E.A Perkins, Historical Processes, Mem. Amer. Math. Soc., Vol. 93, 1991. Zbl0754.60062MR1079034
  4. 4 S.N Evans, E.A Perkins, Absolute continuity results for superprocesses with some applications, Trans. Amer. Math. Soc.Vol. 325 (1991) 661-681. Zbl0733.60062MR1012522
  5. 5 K.J Falconer, Wavelet transforms and order-two densities of fractals, J. Statist. Phys.Vol. 67 (1992) 781-793. Zbl0893.28006MR1171150
  6. 6 K.J Falconer, Techniques in Fractal Geometry, Wiley, Chichester, 1997. Zbl0869.28003MR1449135
  7. 7 K.J Falconer, Y Xiao, Average densities of the image and zero set of stable processes, Stochastic Process. Appl.Vol. 55 (1995) 271-283. Zbl0819.60038MR1313023
  8. 8 S Graf, On Bandt's tangential distribution for self-similar measures, Mh. Math.Vol. 120 (1995) 223-246. Zbl0841.28011MR1363139
  9. 9 J.F Le Gall, Brownian excursions, trees and measure-valued branching processes, Ann. Probab.Vol. 19 (1991) 1399-1439. Zbl0753.60078MR1127710
  10. 10 J.F Le Gall, A class of path-valued Markov processes and its applications to superprocesses, Probab. Theory Related FieldsVol. 95 (1993) 25-46. Zbl0794.60076MR1207305
  11. 11 J.F Le Gall, E.A Perkins, The Hausdorff measure of the support of two-dimensional super-Brownian motion, Ann. Probab.Vol. 23 (1995) 1719-1747. Zbl0856.60055MR1379165
  12. 12 J.F Le Gall, E.A Perkins, S.J Taylor, The packing measure of the support of super-Brownian motion, Stochastic Process. Appl.Vol. 59 (1995) 1-20. Zbl0848.60078MR1350253
  13. 13 L Leistritz, Geometrische und analytische Eigenschaften singulärer Strukturen in Rd, Ph.D. Dissertation, University of Jena, 1994. 
  14. 14 J.M Marstrand, Order-two density and the strong law of large numbers, MathematikaVol. 43 (1996) 1-22. Zbl0859.28002MR1401704
  15. 15 P Mattila, The Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, Cambridge, 1995. Zbl0911.28005MR1333890
  16. 16 P Mörters, Average densities and linear rectifiability of measures, MathematikaVol. 44 (1997) 313-324. Zbl0886.28003MR1600545
  17. 17 P Mörters, The average density of the path of planar Brownian motion, Stochastic Process. Appl.Vol. 74 (1998) 133-149. Zbl0937.60031MR1624025
  18. 18 P Mörters, N.R Shieh, Small scale limit theorems for the intersection local time of Brownian motion, El. J. Probab.Vol. 4 (1999) 1-23, Paper 9. Zbl0937.60032MR1690313
  19. 19 N Patzschke, M Zähle, Fractional differentiation in the self–affine case III. The density of the Cantor set, Proc. Amer. Math. Soc.Vol. 117 (1993) 132-144. Zbl0854.60009MR1143022
  20. 20 N Patzschke, M Zähle, Fractional differentiation in the self–affine case IV. Random measures, Stochastics Stochastics Rep.Vol. 49 (1994) 87-98. Zbl0827.60035MR1784439
  21. 21 E.A Perkins, S.J Taylor, The multifractal structure of super-Brownian motion, Ann. Inst. H. PoincaréVol. 34 (1998) 97-138. Zbl0905.60031MR1617713
  22. 22 D Preiss, Geometry of measures in Rn: Distribution, rectifiability and densities, Ann. Math.Vol. 125 (1987) 537-643. Zbl0627.28008MR890162
  23. 23 R Tribe, The connected components of the closed support of super-Brownian motion, Probab. Theory Related FieldsVol. 89 (1991) 75-87. Zbl0722.60084MR1109475

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.