Percolation on fuchsian groups

Steven P. Lalley

Annales de l'I.H.P. Probabilités et statistiques (1998)

  • Volume: 34, Issue: 2, page 151-177
  • ISSN: 0246-0203

How to cite

top

Lalley, Steven P.. "Percolation on fuchsian groups." Annales de l'I.H.P. Probabilités et statistiques 34.2 (1998): 151-177. <http://eudml.org/doc/77598>.

@article{Lalley1998,
author = {Lalley, Steven P.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {percolation; dual Dirichlet tiling graph; Fuchsian group; hyperbolic triangle groups},
language = {eng},
number = {2},
pages = {151-177},
publisher = {Gauthier-Villars},
title = {Percolation on fuchsian groups},
url = {http://eudml.org/doc/77598},
volume = {34},
year = {1998},
}

TY - JOUR
AU - Lalley, Steven P.
TI - Percolation on fuchsian groups
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1998
PB - Gauthier-Villars
VL - 34
IS - 2
SP - 151
EP - 177
LA - eng
KW - percolation; dual Dirichlet tiling graph; Fuchsian group; hyperbolic triangle groups
UR - http://eudml.org/doc/77598
ER -

References

top
  1. [1] A. Beardon, The Geometry of Discrete Groups, Springer-Verlag, 1983, NY. Zbl0528.30001MR698777
  2. [2] I. Benjamini and O. Schramm, Percolation beyond Zd: many questions and a few answers. Electr. Comm. Probab., Vol. 1, 1996, pp. 71-82. Zbl0890.60091MR1423907
  3. [3] R. Burton and M. Keane, Density and uniqueness in percolation. Comm. Math. Phys., Vol. 121, 1989, pp. 501-505. Zbl0662.60113MR990777
  4. [4] M. Dehn, Ueber unendliche diskontinuierliche Gruppen. Math. Annalen, Vol. 71, 1911, pp. 116-144. Zbl42.0508.03MR1511645JFM42.0508.03
  5. [5] M. Dehn, Transformation der Kurven auf zweiseitigen Flaschen. Math. Annalen, Vol. 72, 1912, pp. 413-421. MR1511705JFM43.0571.03
  6. [6] S. Katok ,Fuchsian Groups, University of Chicago Press, 1992. Zbl0753.30001MR1177168
  7. [7] S. Lalley and T. Sellke, Hyperbolic branching Brownian motion. To appear in Probability Theory & Related Fields, 1996. Zbl0883.60092
  8. [8] S. Lalley and T. Sellke, Limit set of a weakly supercritical contact process on a homogeneous tree. To appear in Annals of Probability, 1998. Zbl0937.60093MR1626499
  9. [9] J. Lehner, A Short Course in Automorphic Forms. Holt, Rinehart, and Winston, 1966. Zbl0138.31404MR201637
  10. [10] T. Liggett, Multiple transition points for the contact process on the binary tree, Annals of Probability, Vol. 24, 1996. Zbl0871.60087MR1415225
  11. [11] W. Magnus, Noneuclidean Tessellations and their Groups, Academic Press, 1974. Zbl0293.50002MR352287
  12. [12] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Wiley & Sons, 1966. 
  13. [13] C.M. Newman and L. Schulman, Infinite clusters in percolation models. J. Statistical Ph., Vol. 26, 1981, pp. 613-628. Zbl0509.60095MR648202
  14. [14] R. Pemantle, The contact process on trees. Annals of Probability, Vol. 20, 1992, pp. 2089-2169. Zbl0762.60098MR1188054
  15. [15] A. Selberg, On discontinuous groups in higher dimensional symmetric spaces. Int. Colloq. Function Th., Tata Institute, 1960. Zbl0201.36603MR130324
  16. [16] A. Stacey, The existence of an intermediate phase for the contact process on trees. Annals of Probability, Vol. 24, 1996. Zbl0878.60061MR1415226

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.